УДК 663.853.52:664

С.М. Доценко, О.В. Скрипко, Т.К. Каленик, Е.В. Медведева

РАЗРАБОТКА БИОТЕХНОЛОГИИ НАТУРАЛЬНЫХ ФАРШЕВЫХ СОЕВО-МЯСНЫХ НАПОЛНИТЕЛЕЙ С ОБОСНОВАНИЕМ ИХ СТРУКТУРНО-МЕХАНИЧЕСКИХ И БИОТЕХНОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК

Разработана биотехнология белково-ликопинового коагулята для производства соево-мясных фаршевых наполнителей. Экспериментальным путем и с помощью математического моделирования обоснованы параметры технологического процесса, изучены химический состав и структурнореологические характеристики фаршевых соево-мясных наполнителей.

Ключевые слова: соевая белковая дисперсная система, белково-ликопиновый коагулят, термокислотная коагуляция, мясо-растительная композиция.

> S.M. Dotsenko, O.V. Skripko, T.K. Kalenik, E.V. Medvedeva

THE BIOTECHNOLOGY DEVELOPMENT OF THE NATURAL MINCED SOYBEAN-MEAT FILLINGS WITH THE SUBSTANTIATION OF THEIR STRUCTURAL-MECHANICAL AND BIOLOGICAL CHARACTERISTICS

The biotechnology of the protein-lycopene coagulate for the soybean-meat minced filling production is developed. By experimental way and with the help of mathematical modeling the technological process parameters are substantiated, the chemical composition and the structural-reological characteristics of minced meat-soybean fillings are studied.

Key words: soybean protein dispersion system, protein-lycopene coagulate, thermal-acid coagulation, meat-vegetable composition.

Введение. В отечественной концепции здорового питания важное место занимает использование растительных белков в производстве пищевых продуктов. В целом продукты с добавлением растительных белков относят к здоровой пище с улучшенным балансом питательных веществ по сравнению с традиционными продуктами.

Значительное изменение структуры питания населения, снижение объемов производства основных видов пищевых продуктов, в том числе и мясных, вызвало необходимость замены части дефицитного сырья биологически ценными полифункциональными добавками.

В Америке и Европе разработаны технологии производства концентрированных соевых белков, которые активно применяются во многих отраслях пищевой промышленности как добавки, обогатители, улучшители, структурирующие компоненты. Они позволяют значительно расширить ассортимент мясных комбинированных изделий, в том числе и изделий для лечебно-профилактического питания.

Однако многие известные методы получения концентрированных соевых белков связаны либо со сложностью и многостадийностью технологического процесса производства, либо с применением реагентов, запрещенных к использованию в диетических и лечебно-профилактических продуктах.

Цель исследований. Разработка биотехнологии мясо-растительного фарша заданного состава и свойств.

Объекты и методы исследований. Соевая белковая дисперсная система, приготовленная из семян сои перспективного сорта «Лазурная», соответствующих ГОСТ 17109-88. «Соя. Требования при заготовках и поставках»; приготовленные с её использованием коагуляты; томатная паста 30 %-я по ГОСТ 3343-93; сыворотка молочная по ТУ 9229-110-04610209-02. Общий химический состав определялся стандартными методами, аминокислотный состав белков – с помощью инфракрасного сканера NIR-4250 (Россия), сумма каротиноидов – спектрофотометрическим методом, энергетическая ценность – с помощью коэффициентов Рубнера. Полученные экспериментальные данные обрабатывали методом математической статистики на ПЭВМ с пакетами прикладных программ «МісгоsoftExcel», «Statistika 6.0».

Результаты исследований и их обсуждение. Было установлено, что соя и соевые продукты содержат практически все пищевые нутриенты, необходимые человеческому организму, а также такие натуральные компоненты, которые обеспечивают сохраняемость продуктов и защищают их от порчи в течение определенного времени. В таблице 1 приведен общий химический состав семян сои сорта «Лазурная».

Таблица 1 Общий химический состав и энергетическая ценность соевого сырья, % ($\overline{X}\pm m; m \leq 0.05$)

Показатель	Вода	Белки	Липиды	Углеводы	Минеральные вещества	Энергетическая ценность, ккал/100 г
Сорт сои «Лазурная» (перспективный)	12,0	39,3	17,5	25,2	6,0	418,5

В таблице 2 приведен аминокислотный состав перспективного сорта сои «Лазурная» селекции ВНИИ сои.

 Таблица 2

 Содержание незаменимых аминокислот в семенах сои перспективного сорта «Лазурная» селекции

 ВНИИ сои

	Шкала Ф	AO/BO3,	Сорт сои		
Незаменимые аминокислоты (НАК)	г/100 г	белка	«Лазурная»		
	Α	С	Α	С	
Лизин	5,5	100	7,1	129	
Лейцин	7,2	100	11,9	165	
Изолейцин	4,3	100	4,7	109	
Валин	4,4	100	7,2	163	
Треонин	3,3	100	3,8	115	
Фенилаланин+тирозин	7,9	100	8,3	105	
Триптофан	1,1	100	1,1	100	
Метионин+цистин	2,3	100	3,1	134	
∑HAK	36,0	100	47,2	131,1	

Примечание. А – содержание аминокислоты мг/100 г; С – аминокислотный скор, %.

Таким образом, в качестве растительного сырья наиболее подходящим для создания мясорастительного фарша является соевое сырье, модифицированное таким способом, который позволял бы иметь белковый продукт с желательным (прогнозируемым) содержанием белков, жиров, углеводов, минеральных веществ, витаминов и других биологически активных веществ. При этом он должен иметь окраску по цвету, сочетающуюся с мясным сырьем.

В настоящее время при производстве структурированного соевого белка из соевой белковой основы (типа «тофу») коагуляцию белка в основном осуществляют с помощью хлористого кальция (CaCl₂), а также уксусной и других кислот, что приводит к потерям ценной соевой сыворотки. При этом, по данным В.В. Суханова, CaCl₂ обладает токсикологическим эффектом [1].

В связи с этим фактом в качестве структурообразователя при осуществлении процесса коагуляции соевого белка нами принято использование раствора томатной пасты в молочной сыворотке [2].

Характеристика общего химического состава и энергетическая ценность соевой белковой дисперсной системы, томатной пасты, молочной сыворотки, а также раствора томатной пасты в молочной сыворотке, приведены в табл. 3.

Анализ данных, представленных в табл. 3, показывает, что полученный раствор томатной пасты с содержанием 15 % сухих веществ, 1,8 % органических кислот в совокупности с β-каротином, ликопином и витамином С представляет собой биологически активный комплекс пищевых нутриентов [3].

Таблица 3 Содержание пищевых нутриентов и энергетическая ценность в молочном, растительном и комбинированном компонентах ($\overline{X} \pm m; m \leq 0.05$)

Продукт	Вода,%	Белки, Nx6,25,%	Липиды, %	Углеводы, %	Минеральные вещества, %	Органические кислоты в пересчете на яблочную, %	β-каротин, мг/100 г	Витамин С, мг/100 г	Энергетическая ценность, ккал/100 г
Соевая белковая дисперсная система	87,5	3,8	2,2	4,2	2,3	-	-	5,5	51,0
Молочная сыворотка	93,4	0,8	0,3	3,7	0,6	1,2	-	-	27,3
Томатная паста	70,0	4,8	1	20,0	2,6	2,5	2,0	45,0	109,2
Раствор томатной пасты в мо-									
лочной сыворотке	85,0	2,8	0,1	12,0	1,6	1,8	1,0	25,0	67,3

^{*} По данным [4].

При этом температура коагуляции составляет $55-60^{\circ}$ С, которая обеспечивает необходимую тепловую обработку получаемого продукта, путем его так называемой длительной пастеризации. Таким образом, оптимальными параметрами получения белково-ликопинового коагулята являются t=10-12 мин, $t^0=55-60^{\circ}$ С, pH=4,45-4,5 ед. при содержании сухих веществ в растворе томатной пасты 12,5-15,0%.

На рисунке 1 представлена технологическая схема получения окрашенного белково-ликопинового коагулята. В результате экспериментальных исследований данного процесса выделены наиболее значимые факторы, существенно влияющие на конечную влажность белково-ликопинового коагулята W_{κ} .

Такими факторами являются начальная влажность белково-ликопинового коагулята – W_{H_2} % (x₁); давление прессования – P, МПа (x₂); продолжительность отжима – t_{n_2} мин (x₃). Уровни и интервалы варьирования указанных факторов представлены в табл. 4.

Таблица 4 Факторы и уровни их варьирования по установлению зависимости $\mathbf{y}_1 = f(\mathbf{x}_1; \mathbf{x}_2; \mathbf{x}_3) \rightarrow min$

Фонтор	Фактор						
Фактор	х 1 (W _н , %)	x ₂ (Р, МПа)	х₃ (tп, мин)				
Верхний уровень	80	1,5	30				
Основной уровень	70	1,0	20				
Нижний уровень	60	0,5	10				
Интервал варьирования	10	0,5	10				

Таблица 5

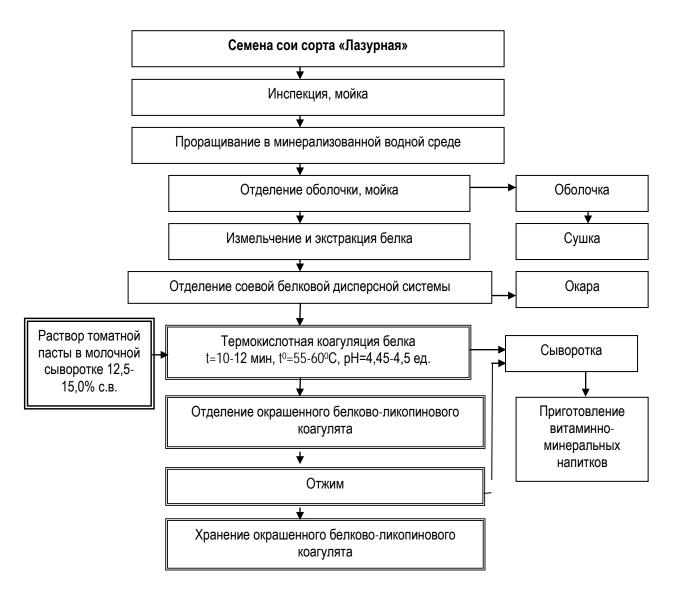


Рис. 1. Технологическая схема получения окрашенного белково-ликопинового коагулята

Исследования проводились согласно стандартной матрице полного факторного эксперимента для 15 опытов. Матрица и результаты эксперимента представлены в табл. 5.

Матрица и результаты полного факторного эксперимента по установлению зависимости $\mathbf{y}_1 = \mathbf{f}(\mathbf{x}_1; \mathbf{x}_2; \mathbf{x}_3) \rightarrow min$

Номер опыта	X 1	X ₂	X ₃	Y ₁
1	2	3	4	5
1	-1	-1	+1	59,0
2	+1	-1	-1	64,0
3	-1	+1	-1	52,0
4	+1	+1	+1	53,0
5	-1	-1	-1	62,0
6	+1	-1	+1	59,0

Окончание	табп.	5
Onon lanao	maon.	•

1	2	3	4	5
7	-1	+1	+1	50,0
8	+1	+1	-1	62,0
9	-1,215	0	0	51,0
10	+1,215	0	0	60,0
11	0	-1,215	0	62,0
12	0	+1,215	0	49,0
13	0	0	-1,215	57,0
14	0	0	+1,215	49,0
15	0	0	0	50,0

После реализации эксперимента были проведены обработка результатов и построение математической модели процесса отжима влаги от окрашенного белково-ликопинового коагулята в виде уравнения регрессии. Результаты регрессионного анализа представлены в табл. 6.

Таблица 6 Регрессионный анализ зависимости \mathbf{y}_1 = $\mathbf{f}(\mathbf{x}_1; \mathbf{x}_2; \mathbf{x}_3)$ →min

Voodbduшионт мололи		Шаг ан	нализа	
Коэффициент модели	1	2	3	4
a ₀	51,02100	51,02100	51,83300	51,83300
a_1	2,36800	2,36800	2,36800	2,36800
a_2	-3,90730	-3,90730	-3,90730	-3,90730
a ₃	-2,62220	-2,62220	-2,62220	-2,62220
a ₁₂	1,37500	1,37500	1,37500	1,37500
a ₁₃	-1,12500	-1,12500	-1,12500	-
a ₂₃	-0,37500	-	-	-
a ₁₁	2,80700	2,80700	2,80700	2,80700
a ₂₂	2,80700	2,80700	2,80700	2,80700
a ₃₃	1,11350	1,11350	-	-
Стандартное отклонение	22,400	23,525	28,933	39,058
R-корреляция	0,97341	0,97205	0,96551	0,95315
F-критерий	9,0291	11,429	12,034	11,347

После отсеивания статистически незначимых коэффициентов методом шагового анализа была получена следующая модель процесса отжима влаги от коагулята в кодированной форме:

$$y_{1} = 51,833 + 2,368 \cdot x_{1} - 3,907 \cdot x_{2} - 2,622 \cdot x_{3} + 1,375 \cdot x_{1} \cdot x_{2} - 1,125 \cdot x_{1} \cdot x_{3} + \\ + 2,807 \cdot x_{1}^{2} + 2,807 \cdot x_{2}^{2} \rightarrow \min.$$
 (1)

Адекватность модели (1) оценена по критерию Фишера ($F_R > F_T$) (табл. 7).

Таблица 7 К оценке адекватности математической модели $\mathbf{y}_1 = f(x_1, x_2, x_3) \rightarrow min$

Критерий	a ₀	a ₁	0.	a ₃	a ₁₂	a ₁₃	a ₁₁	a ₂₂	Заключ об адеква	
			a ₂						F_R	F_T
Y ₁	51,83	2,368	-3,91	-2,62	1,375	-1,13	2,807	2,807	12,03	3,79

Перейдя от кодированных значений факторов $(x_1; x_2; x_3)$ к натуральным $(W_H; P; t_n)$, мы получили модель процесса отжима в следующем её виде:

$$W_{\kappa} = 38,93 - 10,192 \cdot W_{\mu} - 4,214 \cdot P + 1,050 \cdot t_{n} + 0,0458 \cdot W_{\mu} \cdot P - 0,0187 \cdot W_{\mu} \cdot t_{n} + 0,0779 \cdot W_{\mu}^{2} + 0,112 \cdot P^{2} \rightarrow \min.$$
(2)

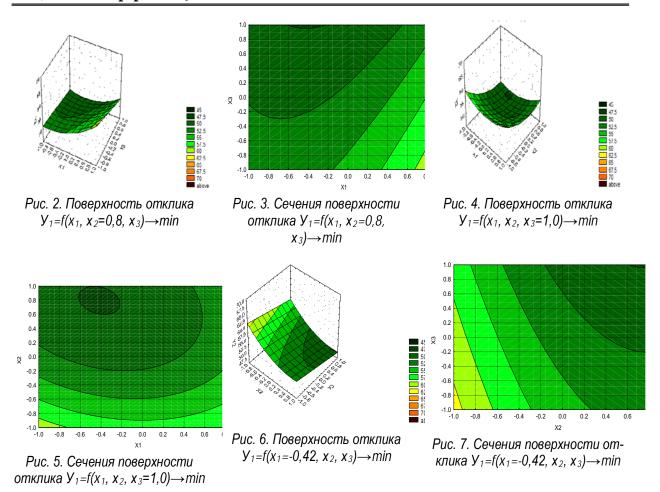
Для определения оптимального сочетания факторов, при которых $W_{\kappa} \rightarrow min$, были заданы области их экстремальных значений (табл. 8).

Таблица 8 Области экстремальных значений зависимостей \mathbf{y}_{1} = $\mathbf{f}(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3})$

Критерий	X ₁	X_2	X ₃	Y ₁
	-0,42	0,80	1,00	47,393
	-0,40	0,80	1,00	47,393
	-0,42	0,78	1,00	47,394
	-0,42	0,82	1,00	47,394
Y ₁ - min	-0,40	0,78	1,00	47,394
11-111111	-0,44	0,80	1,00	47,394
	-0,44	0,82	1,00	47,395
	-0,40	0,82	1,00	47,395
	-0,44	0,78	1,00	47,396
	-0,38	0,78	1,00	47,396

В результате решения задачи определены оптимальные значения факторов: начальная влажность белково-ликопинового коагулята – W_H = 67,5 %; давление прессования – 0,5 МПа; продолжительность отжима – 30 мин. При указанных значениях факторов конечная влажность коагулята составляет не более 47,4 %.

Для анализа влияния указанных факторов на процесс отжима построены поверхности откликов – $Y_1 = f(x_1, x_2, x_3)$ и их сечения, которые представлены на рис. 2–7.


В результате проведенных исследований получены два продукта – соевый белково-ликопиновый коагулят (окрашенный в розовый цвет) и окрашенная в розовый цвет молочно-соевая сыворотка.

При этом сыворотка имела идеально прозрачный чистый розовый цвет при полном отсутствии взвешенных частиц в своей жидкой фазе. В таблице 9 представлен биохимический состав полученных продуктов.

Таблица 9 Биохимический и аминокислотный состав белково-ликопинового коагулята ($\overline{X} \pm m; m \leq 0.05$)

	Содержание основных нутриентов, %									
Продукт	Вода	Белок	Липиды	Углеводы	Клетчатка	Минеральные вещества	Аскорбиновая кислота, мг/100 г	β-каротин, мг/100 г		
	47,4	37,1	5,5	5,5	1,5	3,0	10,0	2,5		
		Co	держани	е незамени	имых амино	кислот, мг/1	00 г			
Окрашенный соевый белковоликопиновый коагулят	Валин	Лейцин	Изолейцин	Лизин	Метионин+ цистин	Фениланин+ тирозин	Треонин	Триптофан		
	7,2	11,8	6,2	9,2	4,2	7,5	6,2	1,7		

Анализ данных, представленных в табл. 9, показывает, что при влажности 47,4 % полученный белково-ликопиновый продукт имеет высокое содержание комплементарного белка, а также клетчатки, β-каротина и витамина C.

На рисунке 8 представлена технологическая схема приготовления бинарной мясо-растительной композиции для последующего получения мясо-растительного фарша заданного состава и свойств.

Рис. 8. Технологическая схема получения мясо-растительного фарша и продуктов на его основе

С целью получения бинарной мясо-растительной композиции подготовленные продукты в необходимом соотношении дозировались, смешивались и на их основе готовился мясной фарш с соево-ликопиновым компонентом.

В дальнейших исследованиях определены структурно-реологические характеристики полученных мясо-растительных фаршевых композиций, которые представлены в табл. 10.

Замена мясного сырья на растительное в количестве более 50 % приводит к тому, что образцы имеют рыхлую консистенцию, а прочностные характеристики снижаются.

В этой связи уровни варьирования такого фактора, как массовая доля растительного компонента, в дальнейших исследованиях были выбраны в интервале 10–50 %.

Таблица 10 Структурно-реологические характеристики и показатели фаршевых мясо-растительных композиций

	Структ	Структурно-механические характеристики модельных образцов							
Показатель	Контрольный	Фарш на	а основе с	ердца	Фарш на основе печени				
Tionadarojib	(фарш мясной)	10 %рк*	30 %рк*	50 %рк*	10 %рк*	30 %рк*	50 %рк*		
Предельное напряжение сдвига, Па	18,23±0,9	17,4±1,2	15,8±1,3	9,3±0,7	16,6±1,1	14,2±1,3	11,4±0,7		
Вязкость пластиче- ская, Па·с	30,0±0,5	24,2±0,7	25,6±0,9	24,4±0,5	29,1±0,9	26,5±1,2	25,4±1,1		
Липкость, Ех10 ³ Па	3,12±0,1	2,2±0,09	2,1±0,07	1,9±0,05	2,6±0,13	2,3±0,1	2,1±0,1		

^{*}рк – растительный компонент (белково-ликопиновый коагулят).

Выводы. Все вышеизложенное позволяет сделать выводы о том, что предложенный способ структурирования и окраски белка, а также взаимного обогащения нутриентов, является рациональным и отвечает требованиям, предъявляемым к продуктам питания поликомпонентного состава, адекватным потребностям организма.

Литература

- 1. *Суханов В.В., Петулько С.Н., Болонова Л.Н.* Токсикологическая оценка хлорида кальция и содержащих его продуктов // Гигиена труда и профзаболеваний. 1990. № 5. С. 51–52.
- 2. Патент №2403807. Российская Федерация. Способ приготовления соевых белковых продуктов / С.М. Доценко [и др.]; заявитель и патентообладатель ГНУ ВНИИ сои РАСХН. Опубл. 10.11.2010 г.
- 3. *Шабров А.В., Дадали В.А., Макаров В.Г.* Биохимические основы действия микрокомпонентов пищи. М., 2003. 186 с.
- 4. Химический состав российских пищевых продуктов: справочник /под ред. *И.М. Скурихина*, *В.А. Ту- тельяна*. М.: ДеЛипринт, 2002. 236 с.

