employee from 01.01.2021 to 01.01.2025
Moscow, Russian Federation
employee
VAK Russia 4.1.1
VAK Russia 4.1.2
VAK Russia 4.1.3
VAK Russia 4.1.4
VAK Russia 4.1.5
VAK Russia 4.2.1
VAK Russia 4.2.2
VAK Russia 4.2.3
VAK Russia 4.2.5
VAK Russia 4.3.3
VAK Russia 4.3.5
UDC 535.372
UDC 631.363
The objective of the study is to determine informative photoluminescence parameters of wheat, oat, and barley feed grains to monitor their fat content. The studies were conducted in 2024 at the Federal Scientific Agroengineering Center VIM in the Laboratory of Innovative Technologies and Technical Means of Feeding in Animal Husbandry. To prepare the samples, the grains were pre-ground using a laboratory mill. Fat content in the ground samples was varied by irrigating them with vegetable oils. Fat content was monitored using a FOSS NIRS DS2500 infrared feed analyzer. Spectral luminescence characteristics were measured using a CM 2203 spectrofluorimeter. Initially, excitation (absorption) characteristics were measured, and the maxima of these were used to determine the photoluminescence spectra. Integral excitation and photoluminescence parameters, as well as statistical parameters of the excitation spectra of the feed, were calculated. As the fat concentration in milled grain increases, its luminescent capacity decreases, which is explained by concentration quenching. The qualitative statistical parameters of excitation (absorption) change relatively weakly and non-systematically; therefore, the most informative photoluminescence fluxes are those excited by radiation at 282/290 nm, 362 nm, and 414/424 nm. The dependences of the integral photoluminescence fluxes on the fat concentration for all studied grain millings can be statistically reliably approximated by linear functions. Moreover, the determination coefficients for wheat are 0.971–0.987, for oats – 0.943–0.995, and for barley – 0.852–0.984. For the development of a method and the creation of a universal device for monitoring the fat content in grain feed, the use of photoluminescence fluxes excited by radiation at 362 nm is most appropriate.
photoluminescence, grain fat concentration, wheat, oats, barley, emission spectrum, photoluminescence flux, statistical parameters
1. Lobachevskiy YaP, Dorokhov AS. Digital technologies and robotic devices in the agriculture. Agricultural Machinery and Technologies. 2021;15(4):6-10. (In Russ.). DOI:https://doi.org/10.22314/2073-7599-2021-15-4-6-10. EDN: https://elibrary.ru/YFRZDV.
2. Ivanov YuA. Strategic directions of dairy cattle breeding development. Tekhnika i tekhnologii v zhivotnovodstve. 2022;2:8-23. (In Russ.). DOI:https://doi.org/10.51794/27132064-2022-2-18. EDN: https://elibrary.ru/BYHERR.
3. Fomenko PA, Bogatyreva EV, Korel'skaya LA, et al. The quality of bulky feeds on the farms of the Vologda Region. Molochnohozyajstvennyj vestnik. 2016;1:50-56. (In Russ.). EDN: https://elibrary.ru/VRXAVR.
4. Noda IB, Dorofeeva LL, Ponomarev VA. Kachestvo i pitatel'naya cennost' kormov v hozyajstvah Ivanovskoj oblasti. World of innovation. 2015;(1-4):117-124. (In Russ.). EDN: https://elibrary.ru/ZGWNET.
5. Simonov GA, Nikiforov VE, Maklahov AV, et al. Opredelenie vlazhnosti furazhnogo zerna pri ego proizvodstve. Effektivnoe zhivotnovodstvo. 2023;4:92-94. (In Russ.). DOI:https://doi.org/10.24412/cl-33489-2023-4-92-94. EDN: https://elibrary.ru/HQEHGM.
6. Mikhaylova LR, Zhestyanova LV, Lavrentiev AYu, et al. The effectiveness of use of natural zeolites in feeding of young pigs. Head of Animal Breeding. 2022;6:13-22. (In Russ.). DOI:https://doi.org/10.33920/sel-03-2206-02. EDN: https://elibrary.ru/GCSCNY.
7. Masalov VN, Berezina NA, Chervonova IV. The state of the grain farming in Russia, the role of grain crops in the feeding of agricultural animals and human diet. Bulletin of agrarian science. 2021;2:3-15. (In Russ.). DOI:https://doi.org/10.17238/issn2587-666X.2021.2.3. EDN: https://elibrary.ru/LMZPHJ.
8. Humer E, Zebeli Q. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Animal Feed Science and Technology. 2017;226:133-151. DOI:https://doi.org/10.1016/j.anifeedsci.2017.02.005. EDN: https://elibrary.ru/YYPJIT.
9. Busygin PO, Podobed LI, Bespamyatnyh NN, et al. Pitatel'nost' kormov kak odin iz glavnyh faktorov produktivnosti i zdorov'ya sel'skohozyajstvennyh zhivotnyh. BIO. 2020;10:26-31 (In Russ.). EDN: https://elibrary.ru/TSKMSI.
10. Sizova EA, Ryazantseva KV. Fats and emulsifiers in feeding broiler chickens (review). Agricultural Biology. 2022;57(4):664-680. (In Russ.). DOI:https://doi.org/10.15389/agrobiology.2022.4.664rus. EDN: https://elibrary.ru/XUFAIW.
11. Cooke AS, Machekano H, Ventura-Cordero Ja, et al. Nyamukondiwa C. Opportunities to improve goat production and food security in Botswana through forage nutrition and the use of supplemental feeds. Food Security. 2024;16(3):607-622. DOI:https://doi.org/10.1007/s12571-024-01452-1. EDN: https://elibrary.ru/GBLRHI.
12. Elbaz AM, Zaki EF, Salama AA, et al. Assessing different oil sources efficacy in reducing environmental heat-stress effects via improving performance, digestive enzymes, antioxidant status, and meat quality. Scientific Reports. 2023;13(1):20179. DOI:https://doi.org/10.1038/s41598-023-47356-6. EDN: https://elibrary.ru/PJRIDI.
13. Ogbuewu IP, Mbajiorgu CA. Enhancement of nutritional and functional qualities of tropical leaf meal as feed ingredients in chickens through the use of fermentation technology. Tropical Animal Health Production. 2024;56(8):377. DOI:https://doi.org/10.1007/s11250-024-04223-4. EDN: https://elibrary.ru/TZWCMC.
14. Radhakrishnan DK, AkbarAli I, Velayudhannair K, et al. Exploring the role of plant oils in aquaculture practices: an overview. Aquaculture International. 2024;32:7719-7745. DOI:https://doi.org/10.1007/s10499-024-01538-9. EDN: https://elibrary.ru/LEXPPU.
15. Sandström V, Chrysafi A, Lamminen M, et al. Food system by-products upcycled in livestock and aquaculture feeds can increase global food supply. Nature Food. 2022;3(9):729-740. DOI:https://doi.org/10.1038/s 43016-022-00589-6. EDN: https://elibrary.ru/CHZNTI.
16. Han S, Zhang F, Zhao Y, et al. A comparative study of the intestinal digestive characteristics of different feeds for Holstein cows. Animal Diseases. 2022;2(1):17. DOI:https://doi.org/10.1186/s44149-022-00049-5. EDN: https://elibrary.ru/NGKFRP.
17. Dou Zh, Toth JD, Pitta DW, et al. Proof of concept for developing novel feeds for cattle from wasted food and crop biomass to enhance agri-food system efficiency. Scientific Reports. 2022;12(1):13630. DOI:https://doi.org/10.1038/s41598-022-17812-w. EDN: https://elibrary.ru/VRTXUY.
18. Kowalska G, Pankiewicz U, Kowalski R. Evaluation of Chemical Composition of Some Silphium L. Species as Alternative Raw Materials. Agriculture. 2020;10(4):132. DOI:https://doi.org/10.3390/agriculture10040132. EDN: https://elibrary.ru/BIKPPV.
19. Rani S, Singh N, Kaur Ch, et al. Measurement of phytochemical content and nutritional characteristics of microgreens grown in high altitude region of India. Food Measure. 2024;18:3113-3127. DOI:https://doi.org/10.1007/s11694-024-02390-4. EDN: https://elibrary.ru/UOCFDY.
20. Kurzova AA, Knyazeva AS, Vostrikova NL. New standards for test methods of meat products. Vsyo o myase. 2018;(3):28-31. (In Russ.). DOI:https://doi.org/10.21323/2071-2499-2018-3-28-31. EDN: https://elibrary.ru/USHXFR.
21. Basova EA, Yadrishchenskaya OA, Shpynova SA, et al. Oilseed crops grown in Western Siberia: composition and use in poultry diets. Pticevodstvo. 2021;(7-8):16-21. (In Russ.). DOI:https://doi.org/10.33845/0033-3239-2021-70-7-8-16-21. EDN: https://elibrary.ru/QHVQPB.
22. Hewavitharana GG, Perera SB., Navaratne SB., et al. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review // Arabian Journal of Chemistry. 2020;13(8):6865-6875. DOI:https://doi.org/10.1016/j.arabjc.2020.06.039. EDN: https://elibrary.ru/TTRKXQ.
23. Burmistrov DE, Pavkin DYu, Khakimov AR, et al. Application of optical quality control technologies in the dairy industry. Photonics. 2021;8(12). DOI:https://doi.org/10.3390/photonics8120551. EDN: https://elibrary.ru/RAXXHN.
24. Sergeeva AS. Current issues in determining fat content in food products and food raw materials (review). Measurement standards. reference materials. 2024;20(1):59-84. (In Russ.). DOI: 10.20915/ 2077-1177-2024-20-1-59-84. EDN: https://elibrary.ru/PMWQXJ.
25. Belyakov MV, Nikitin EA, Efremenkov IYu. Efficiency of the photoluminescent method for monitoring the homogeneity of feed mixtures in animal husbandry. Agricultural Machinery and Technologies. 2022;16(3):55-61. (In Russ.). DOI:https://doi.org/10.22314/2073-7599-2022-16-3-55-61. EDN: https://elibrary.ru/LIWODN.
26. Belyakov MV. Optical luminescent properties of agricultural plants’ seeds. Agrofizika. 2024;(4):72-78. (In Russ.). DOI:https://doi.org/10.25695/AGRPH.2024.04.09. EDN: https://elibrary.ru/MMYHXZ.
27. Matveeva TA, Sarimov RM, Persidskaya OK, et al. Application of Fluorescence Spectroscopy for Early Detection of Fungal Infection of Winter Wheat Grains. AgriEngineering. 2024;(6):3137-3158. DOI:https://doi.org/10.3390/agriengineering6030179. EDN: https://elibrary.ru/JEGUAV.



