The mechanism of the molecular hydrogen adsorption to the Li-graphane system is considered in the article. It is shown that such system can adsorb up to 12 % WT of the molecular hydrogen. The result meets the generally accepted standards of the American Department of Energy (DOE) on the adsorbed hydrogen storage for its industrial use in transportation (6-7 % WT).
graphane, sorption, hydrogen, lithium
1. Fedorov A., Sorokin P. Kuzubov A. Ab initio study of hydrogen chemical adsorption on platinum surface/carbon nanotube join system // Phys. Status Solidi (b) - 2008. - №245. - S. 1546-1546.
2. Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature / C. Liu [et al.] // Science. -1999. - №286. - S. 1127-1129.
3. Graphene nanostructures as tunable storage media for molecular hydrogen / S. Patchkovskii [et al.] // Proc. Nat. Acad. Sci. - 2005. - №102. - S. 10439-10444.
4. Singh A.K., Ribas M.A. Yakobson B.I. H-Spillover through the Catalyst Saturation: An Ab Initio Thermodynamics Study // ACS Nano. - 2009. - №3. - S. 1657-1662.
5. Pupysheva O.V., Farajian, A.A. Yakobson, B.I. Fullerene Nanocage Capacity for Hydrogen Storage // Nano Lett. - 2007. - №8. - S. 767-774.
6. Interaction of lithium with graphene: An ab initio study / M. Khantha [et al.] // Phys. Rev. B. - 2004. - №70. - S. 125422.
7. Lugo-Solis A., Vasiliev I. Ab initio study of K adsorption on graphene and carbon nanotubes: Role of long-range ionic forces // Phys. Rev. B. - 2007. - №76 - S. 235431.
8. Choi S., Jhi S. Electronic property of Na-doped epitaxial graphenes on SiC // Appl. Phys. Lett. - 2009. -№94. - S. 153108.
9. Choi S.M., Jhi S.H. Self-Assembled Metal Atom Chains on Graphene Nanoribbons // Phys. Rev. Lett. - 2008. - №101. - S. 266105.
10. Chandrakumar K. R. S. Ghosh S.K. Alkali-Metal-Induced Enhancement of Hydrogen Adsorption in C60 Fullerene: An ab Initio Study // Nano Lett. - 2007. - №8. - S. 13-19.
11. P. Chen [et al.] H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures // Science. - 1999. - №285. - S. 91.
12. Froudakis G.E. Why Alkali-Metal-Doped Carbon Nanotubes Possess High Hydrogen Uptake // Nano Lett. -2001. - №1. - S. 531-533.
13. Clustering of Sc on SWNT and Reduction of Hydrogen Uptake: Ab-Initio All-Electron Calculations / P.O. Krasnov [et al.] // J. Phys. Chem. C. - 2007. - №111. - S. 17977-17980.
14. Electronic and magnetic properties of 3d transition-metal atom adsorbed graphene and graphene nanoribbons / H. Sevingli [et al.] // Phys. Rev. B. - 2008. - №77. - S. 195434.
15. Armstrong G. Graphene: Here comes graphane? // Nature Chemistry. - 2009.
16. Sofo J.O., Chaudhari A.S. Barber G.D. Graphane: A two-dimensional hydrocarbon // Phys. Rev. B. - 2007. -№75. - S. 4.
17. Control of graphene's properties by reversible hydrogenation: evidence for graphane / D. Elias [et al.] // Science. - 2009. - №323. - C. 610-613.
18. Perdew J. P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems // Phys. Rev. B. - 1981. - №23.
19. I. others QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials / M. Calandra [et al.] // J. Phys.: Cond. Matter. - 2009. - №21. - C. 395502.
20. Chemical engineering of adamantane by lithium functionalization: A first-principles density functional theory study / A. Ranjbar [et al.] // Phys. Rev. B. - 2011. - №83. - C. 8.
21. Yang C. A metallic graphene layer adsorbed with lithium // Appl. Phys. Lett. - 2009. - №94. - C. 163115.