The metabolism enzymes activity of reactive ox-ygen species (ROS) - NADPH-oxidase, catalase, superoxide dismutase and peroxidase and the in-tensity of light emission in the mechanically dam-aged mycelium of the luminous fungus Neonothopanus nambi without and with addition of salicylic acid (SA) were studied. It was shown that in the conditions of acute experiment, after the me-chanical damage of mycelium samples and its sub-sequent incubation in a nutrient medium for a short time interval (6-7 hours), there was a significant (2 orders of magnitude or more) increase in the light emission of the fungus. A luminescence in-crease was registered against the background of a significant decrease of the superoxide dismutase (SOD) activity and total peroxidase activity in the mycelium. At the same time, the activity level of NADPH-oxidase in the fungus remained virtually unchanged throughout the experiment, but the ac-tivity level of catalase increased slightly. The addi-tion of SA in the incubation medium considerably inhibited the light emission of N. nambi mycelium. Wherein it was shown that the exogenous SA acti-vated all the studied ROS metabolism enzymes, except for catalase activity, which insignificantly decreased. The data obtained is consistent with our earlier hypothesis that the light emission of fungi is an additional mechanism of antioxidant protection against damaging effects of ROS. Significant in-crease in the light emission of the damaged myce-lium with a decrease in SOD activity was observed and especially, total peroxidase activity may indi-cate the start of this mechanism in the fungus for the protection against ROS, first of all H2O2 and other peroxide compounds.
reactive oxygen species, luminous fungi, salicylic acid, NADPH-oxidase, catalase, su-peroxide dismutase, peroxidase
1. Bondar' V.S., Puzyr' A.P., Purtov K.V. [i dr.]. O lyuminescentnoy sisteme svetya-schegosya griba Neonothopanus nambi // DAN. - 2011. - T. 438. - № 5. - S. 705-707.
2. Bondar V.S., Shimomura O., Gitelson J.I. Lu-minescence of higher mushrooms // J. Sib. Fed. Univ. Biol. - 2012. - V. 5. - №. 4. - P. 331-351.
3. Bondar' V.S., Rodicheva E.K., Medvedeva S.E. [i dr.]. O mehanizme svecheniya griba Neonothopanus nambi // DAN. - 2013. - T. 449. - № 2. - S. 223-227.
4. Bondar' V.S., Puzyr' A.P., Purtov K.V. [i dr.]. Vydelenie lyuminescentnoy siste-my iz svetyaschegosya griba Neonothopanus nambi // DAN. - 2014. - T. 455. - № 3. - S. 346-348.
5. Mogil'naya O.A., Ronzhin N.O., Medvedeva S.E. [i dr.]. Obschaya peroksidaznaya i kata-laznaya aktivnosti svetyaschihsya bazidiomi-cetov Armillaria borealis i Neonothopanus nambi v sravnenii s urovnem svetovoy emissii // Prikladnaya biohimiya i mikro-biologiya. - 2015. - T. 51. - № 4. - S. 395-401.
6. Medvedeva S.E., Artemenko K.S., Krivosheenko A.A. [et al.]. Growth and light emission of luminous basidiomycetes cultivat-ed on solid media and in submerged culture // Mycosphere. - 2014. - V. 5. - P. 565-577.
7. Kobzeva T.V., Melnikov A.R., Karogodina T.Y. [et al.]. Stimulation of luminescence of myceli-um of luminous fungus Neonothopanus nambi by ionizing radiation // Luminescence. - 2014. - V. 29. - P. 703-710.
8. Tyul'kova N.A., Medvedeva S.E., Bondar' V.S. Sravnitel'naya ocenka intensivnostey perekisnogo okisleniya lipidov i svecheniya griba Neonothopanus nambi // Vestnik KrasGAU. - 2016. - № 1. - S. 21-28.
9. Mogilnaya O.A., Ronzhin N.O., Bondar V.S. Comparative evaluation of total peroxidase and catalase activities during light emission of luminous fungus Neonothopanus nambi // Mycosphere. - 2016. - V. 7. - P. 499-510.
10. Desican R., Mackerness S.A., Hancock J.T. [et al.]. Regulation of the Arabidopsis transcriptome by oxidative stress // Plant Physiol. - 2001. - V. 127. - P. 159-172.
11. Tarchevskiy I.A. Signal'nye sistemy kle-tok rasteniy. - M.: Nauka, 2002. - 294 s.
12. Gessler N.N., Averyanov A.A., Belozerskaya T.A. Aktivnye formy kisloroda v regulya-cii razvitiya gribov // Biohimiya. - 2007. - T. 72. - № 10. - S. 1091-1109.
13. Vranova E., Inze D., Van Breuegegem F. Sig-nal transduction during oxidative stress // J. Exp. Bot. - 2002. - V. 53. - P. 1227-1236.
14. Jaspers P., Kangasjarvi J. Reactive oxygen species in abiotic stress signaling // Physiol. Plant. - 2010. - V. 138. - P. 405-413.
15. Kolupaev Yu.E., Karpec Yu.V. Aktivnye formy kisloroda pri adaptacii rasteniy k stressovym temperaturam // Fiziologiya i biohimiya kul'turnyh rasteniy. - 2009. - T. 41. - № 2. - S. 95-108.
16. Karpun N.N., Yanushevskaya E.B., Mihaylova E.V. Mehanizmy formirovaniya nespeci-ficheskogo inducirovannogo immuniteta u rasteniy pri biogennom stresse // Sel'-skohozyaystvennaya biologiya. - 2015. - T. 50. - № 5. - S. 540-549.
17. Apel K., Hirt H. Reactive oxygen species: me-tabolism, oxidative stress, and signal transduction // Annu. Rev. Plant Biol. - 2004. - V. 55. - P. 373-399.
18. Kolupaev Yu.E., Yastreb T.O. Stress-protektornye effekty salicilovoy ki-sloty i ee strukturnyh analogov // Fizio-logiya i biohimiya kul'turnyh rasteniy. - 2013. - T. 45. - № 2. - S. 113-126.
19. Belyh Yu.V., Kirillova N.V., Spasenkov A.I. Vliyanie salicilovoy kisloty na an-tioksidantnuyu i prooksidantnuyu aktivno-sti v rastitel'nyh kletkah // Vestnik Sankt-Peterburgskogo universiteta. - 2009. - Vyp. 2. - S. 145-151.
20. Molodchenkova O.O. Vliyanie salicilovoy kisloty na otvetnye reakcii prorostkov kukuruzy pri abioticheskih stressah // Vіsnik Harkіvs'kogo nacіonal'nogo agrarno-go unіversitetu. - 2008. - Vip. 3(15). - S. 24-32.
21. Abilova G.A. Uchastie salicilovoy kisloty v sisteme antioksidantnoy zaschity u tri-tikale pri deystvii ZnSO4 // Vestnik Da-gestanskogo gosudarstvennogo universite-ta. - 2013. - Vyp. 1. - S. 124-127.
22. Fen'ko A.A., Repkina N.S., Talanova V.V. Vliyanie salicilovoy kisloty na holodo-ustoychivost' prorostkov ogurca // Tr. Ka-rel'skogo nauchnogo centra RAN. - 2015. - № 11. - S. 26-34.
23. Fujita M., Fujita Y., Noutoshi Y. [et al.]. Cross-talk between abiotic and biotic stress respons-es: a current view from the points of conver-gence in the stress signalling networks // Curr. Opin. Plant Biol. - 2006. - № 9. - P. 436-442.
24. Kaur N., Gupta A.K. Signal transduction path-ways under abiotic stresses in plant // Curr. Sci. - 2005. - V. 88. - № 11. - P. 1771-1780.
25. Lushchak V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals // Comp. Biochem. Physiol. Part C. - 2011. - V. 153. - P. 175-190.
26. Chen Z., Silva H., Klessig D.F. Active oxygen species in the induction of plant systemic ac-quired resistance by salicylic acid // Science. - 1993. - V. 262. - № 5141. - P. 1883-1886.
27. Barna B., Adam A.L., Gulner G. [et al.]. Role of antioxidant systems and juvenility in tolerance of plants to diseases and abiotic stresses // Acta Phytopathol. Entomol. Hung. - 1995. - V. 30. - P. 39-45.
28. Rao M.V., Paliyaht G., Ormrod D.P. [et al.]. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing en-zymes (salicylic acid-mediated oxidative dam-age requires H2O2) // Plant Physiol. - 1997. - V. 115. - P. 137-149.
29. Polesskaya O.G., Kashirina E.I., Alehina N.D. Izmenenie aktivnosti antioksidant-nyh fermentov v list'yah i kornyah psheni-cy v zavisimosti ot formy i dozy azota v srede // Fiziologiya rasteniy. - 2004. - T. 51. - S. 686-691.
30. Aeby H. Catalase in vitro // Methods Enzymol. - 1984. - V. 105. - P. 121-126.
31. Vol'skiy H.H., Kozlov V.A., Lozovoy V.P. Vliyanie gidrokortizona na produkciyu su-peroksidnogo radikala fagocitiruyuschimi kletkami selezenki // Byul. eksperimen-tal'noy biologii i mediciny. - 1987. - T. 103. - № 6. - S. 694-696.
32. Wi S.J., Ji N.R., Park K.Y. Synergistic biosyn-thesis of biphasic ethylene and reactive oxy-gen species in response to hemibiotrophic phytophthora parasitica in tobacco plants // Physiol. Plant. - 2012. - V. 159. - № 1. - P. 251-265.
33. Okey E.N., Duncan E.J., Sirju-Charran G. Phy-tophthora canker resistance in cacao: Role of peroxidase, polyphenoloxidase and phenylal-anine ammonialyase // J. Phytopathol. - 1997. - V. 145. - № 7. - P. 295-299.