Проведена сравнительная оценка анти-бактериальной активности свободного и ко-валентно связанного с наноалмазами лизоци-ма с использованием в качестве модельной мишени грамотрицательных светоизлучаю-щих бактерий Photobacterium phosphoreum. Активность свободного и иммобилизованного фермента после добавления к клеточной сус-пензии оценивали по изменению величины ее оптической плотности. Ковалентную пришив-ку лизоцима проводили на поверхность нано-алмазов, активированную бензохиноном. Ус-тановлено, что количество иммобилизованно-го на наноалмазы лизоцима определяется ве-совым соотношением компонентов (фер-мент:наночастицы) на стадии ковалентной пришивки белка. Максимальная иммобилизация лизоцима (до 1 мг белка на 1 мг наночастиц) наблюдается при весовом соотношении фер-мент:наноалмазы - 6:1. Повышение количест-ва белка на стадии пришивки не увеличивает этот показатель. Сделано предположение, что дополнительным фактором, влияющим на эффективность ковалентного связывания ли-зоцима, по-видимому, является размер кла-стеров наночастиц. Установлено, что кова-лентно пришитый на наноалмазы лизоцим проявляет функциональную активность и вы-зывает лизис бактериальных клеток, что подтверждается снижением оптической плотности клеточной суспензии. Добавка к суспензии бактерий хелатора двухвалентных ионов ЭДТА (концентрация 2 мM) увеличивает эффект иммобилизованного фермента более чем в 2 раза. В сравнительных экспериментах показано, что активность лизоцима в составе комплекса наноалмазы-фермент снижена по сравнению с активностью свободного лизоци-ма. При равных концентрациях (25 мкг/мл) до-бавленного в клеточную суспензию свободного и иммобилизованного на наноалмазы лизоцима одинаковый показатель лизиса бактериальных клеток P. phosphoreum (снижение оптической плотности на 60-65%) регистрируется через 1 час и 3 часа соответственно. Обсуждаются причины наблюдаемого эффекта.
наноалмазы, лизоцим, ко-валентная иммобилизация фермента, анти-бактериальная активность, светящиеся бак-терии
1. Ho D., Wang C.-H.K., Chow E.K.-H. Nanodiamonds: The intersection of nanotechnology, drug development, and personalized medicine // Science Advances. - 2015. - V. 1. - № 7. - P. 1-14.
2. The properties and applications of nanodiamonds / V.N. Mochalin, O. Shenderova, D.Ho [et al.] // Nature Nanotechnology. - 2012. - V. 7. - P. 11-23.
3. Schrand A.M., Hens S.A.C., Shenderova O.A. Nanodiamond Particles: Properties and Perspectives for Bioapplications // Solid State Mater. Sci. - 2009. - V. 34. - P. 18-74.
4. Catalytic activity of nanodiamonds in azocoupling reaction / N.O. Ronzhin, A.P. Puzyr, A.E. Burov [et al.] // J. Biomater. and Nanobiotechnol. - 2014. - V.5. - № 3. - P.173-178.
5. Конструирование многоразовой системы биохимического определения мочевины на основе наноалмазов / Н.О. Ронжин, А.В. Барон, В.С. Бондарь [и др.] // ДАН. - 2015. - Т. 465. - С. 741-744.
6. Nanodiamonds as carriers for address delivery of biologically active substances / K.V. Purtov, A.I. Petunin, A.E. Burov [et al.] // Nanoscale Res. Lett. - 2010. - V. 5. - P. 631-636.
7. The Biocompatibility of Nanodiamonds and Their Application in Drug Delivery Systems / Y. Zhu, J. Li, W. Li [et al.] // Theranostics. - 2012. - V. 2 (3). - P. 302-312.
8. Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles / R.A. Shimkunas, E. Robinson, R. Lam [et al.] // Biomaterials. - 2009. - V. 30. - I. 29. - P. 5720-5728.
9. The adsorption of tetracycline and vancomycin onto nanodiamond with controlled release / J. Giammarco, V.N. Mochalin, J. Haeckel [et al.] // J. Colloid Interface Sci. - 2016. - V. 468. - P. 253-261.
10. Colloidal stability of modified nanodiamond particles / N. Gibson, O. Shenderova, T.J.M. Luo [et al.] // Diamond Relat. Mater. - 2009. - V. 18. - P. 620-626.
11. Physical and chemical properties of modified nanodiamonds / A.P. Puzyr, V.S. Bondar, A.A. Bukayemsky [et al.] // NATO Sci. Ser. II: Math. Phys. Chem. - 2005. - V. 192. - P. 261-270.
12. Бондарь В.С., Пузырь А.П. Наноалмазы для биологических исследований // Физика твердого тела. - 2004. - Т. 46 (4). - С. 716-719.
13. Способ получения наноалмазов взрывного синтеза с повышенной коллоидной устойчивостью: пат. №2252192 Рос. Федерация : МПК C01B 31/06 / Пузырь А.П., Бондарь В.С. - Опубл. 20.05.2005, Бюл. № 14.
14. Brandt J., Andersson L.O., Porath J. Covalent Attachment of Proteins to Polysaccharide Carriers by Means of Benzoquinone // Biochim. Biophys. Acta - Protein Structure. - 1975. - V. 386 (1). - P. 196-202.
15. Ready to Use P-Benzoquinone-Activated Supports for Biochemical Coupling with Special Applications for Laccase Immobilization / M.-A. Mateescu, G. Weltrowska, E. Agostinelli [et al.] // Biotech. Tech. - 1989. - V. 3 (6). - P. 415-420.
16. Могильная О.А., Бондарь В.С. Сравнительные исследования анти-бактериальных свойств лизоцима при его адсорбции и ковалентном связывании на наноалмазах // Российские нанотехнологии. - 2012. - Т. 7. - С. 43-48.
17. Скоупс Р. Методы очистки белков. - М.: Мир, 1985. - 358 с.