Облучательные установки в овощеводстве защи-щенного грунта являются эффективным инструмен-том управления агроценозами в силу своих специфич-ных характеристик. Рациональное управление облучен-ностью, спектральным составом и продолжительно-стью воздействия должно осуществляться по опреде-ленным закономерностям для получения урожая с требу-емыми параметрами качества. Разработка рациональ-ного по энергетическим и спектральным характеристи-кам облучателя для тепличных технологий является целью исследования. Исследованы четыре светодиодных модуля разной мощности: два - по 60 Вт и два - по 43 Вт. За базовый критерий эффективности был при-нят показатель эффективной отдачи ηф. Исследования показали, что светодиодный модуль на базе светодио-дов с «полным спектром» обладает самой низкой эф-фективностью, поскольку в них максимальная плот-ность излучения (φ = 120,6 мВт/нм) приходится на λ = 450 нм, т. е. синюю часть спектра. Увеличение эф-фективности такого модуля при сохранении неизмен-ной мощности достигается путем замены части све- тодиодов на красные и синие. Добавление светодиодов с коротковолновым красным излучением (λ = 635 нм) в отношении 1 : 3 к светодиодам с длинноволновым крас-ным излучением (λ = 660 нм) при равном количестве белых (λ = 400-700 нм) и синих (λ = 450 нм) светодиодов дает увеличение фотосинтезного фотонного потока на 8,5 % по сравнению с вариантом, где это отношение 3 : 1. Высокая эффективность красного светодиода приводит к тому, что добавление красного к белому повышает энергетическую эффективность облучате- ля до ηф = 1,92 мкмоль/Вт. На базе светодиодного моду-ля, построенного из светодиодов фирмы Cree, разра-ботан тепличный облучатель H-Light FITO 43W LED Light, рекомендуемый как для применения в вегетацион-ной установке для экспериментальных исследований, так и для промышленного применения в стеллажных установках.
сооружения защищенного грунта, светодиодный модуль, спектр излучения, мощность источников излучения, спектрограмма, тепличный об-лучатель, эффективность
1. Максимов Н.А. Биологическая основа светокультуры растений // Тр. ин-та физиол. растений АН СССР. - 1955. - Т. 10. - С. 7-16.
2. Клешнин А.Ф. Растение и свет: теория и практика светокультуры растений. - М.: Изд-во АН СССР. - 1954. - 456 с.
3. Воскресенская Н.П. Фотосинтез и спектральный состав света. - М.: Наука, 1965. - 312 с.
4. Мошков Б.С. Выращивание растений при искусственном освещении. - Л.: Колос, 1966. - 287 с.
5. Леман В.М. Культура растений при электрическом свете. - М.: Колос, 1971. - 320 с.
6. Шульгин И.А. Растение и Солнце. - Л.: Гидрометеоиздат, 1973. - 252 с.
7. Тихомиров А.А., Лисовский Г.М., Сидько Ф.Я. Спектральный состав света и продуктивность растений. - Новосибирск: Наука. Сиб. отд-ние, 1991. - 168 с.
8. Проблема оптимизации спектральных и энергетических характеристик излучения растениеводческих ламп / А.А. Тихомиров [и др.]; СО АН СССР. - Препринт ИФСО-28 Б. - Красноярск, 1983. - 45 с.
9. Большин Р.Г. Повышение эффективности облучения меристемных растений картофеля светодиодными (LED) фитоустановками: дис.. канд. техн. наук. - М., 2016. - 159 с.
10. Козырева И.Н. Формирование фитопотоков светодиодных облучательных установок для выращивания сельскохозяйственных культур в условиях защищенного грунта: дис.. канд. техн. наук. - Томск, 2014. - 119 с.
11. Каримов И.И. Повышение эффективности облучения растений с использованием светодиодных светильников в сооружениях закрытого грунта: (на примере семенного картофеля): дис. … канд. техн. наук. - Уфа, 2017. - 153 с.
12. GL Opti Sphere 2000. - URL: http://gloptic.com/ prod-ucts/gl-opti-sphere-2000/?lang=ru (дата обращения: 21.01.2018).
13. Ефремов Н.С. Оценка интенсивности искусственного освещения светодиодного облучателя на листовой салат в защищенном грунте // Научный журнал КубГАУ. - 2014. - № 102 (08). - С. 3-10.