КСАНТАН – ЦЕЛЕВОЙ ПРОДУКТ БИОТЕХНОЛОГИИ ПИЩЕВОГО, БИОМЕДИЦИНСКОГО И ТЕХНИЧЕСКОГО НАЗНАЧЕНИЯ
Аннотация и ключевые слова
Аннотация (русский):
Цель исследования – анализ современного состояния перспективных исследований и промышленных разработок в области выявления закономерностей синтеза и оптимизации условий получения ксантана, оценка мировых объемов производства и эффективности применения в различных областях. Ксантан обладает исключительными свойствами, включающими экологическую чистоту и биоразрушаемость, устойчивость к широкому диапазону температур, активной реакции и солености среды, неньютоновское поведение, высокую вязкость при низких концентрациях (600–2000 мг/л), устойчивость к механической деградации. Свойства ксантана обеспечили широкое применение в пищевой и кормовой, фармацевтической, косметической, биомедицинской, агрохимической, нефтяной промышленности в качестве загустителей, эмульгаторов, стабилизаторов суспензий и флокулянтов и прочих компонентов, улучшающих качество продуктов. В пищевой промышленности ксантан используют при изготовлении мясных и молочных продуктов, соусов, мороженого, желе и джемов, хлебобулочных изделий. Применение ксантана стабилизирует продукты, делает их структуру более пластичной, уменьшает потери влаги при обработке и хранении. Ксантан входит в состав фармпрепаратов, повышает качество и усвояемость кормов, повышает эффективность процессов нефтедобычи, имеет большие перспективы в биомедицине, клеточной и тканевой инженерии, в разработке материалов и биосистем для очистки стоков и охраны окружающей среды. Обзор содержит анализ научных публикаций и результатов интеллектуальной деятельности, включающих характеристики штаммов-продуцентов ксантана, результаты оптимизации состава питательных сред, условий биосинтеза ксантана, информацию о ведущих производителях ксантана и эффективности его применения.

Ключевые слова:
ксантан, ксантановая камедь, штаммы-продуценты, Xanthomonas campestris, биосинтез, промышленное производство ксантана, области применения ксантана
Список литературы

1. Pu W., Shen C., Wei B., et al. A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field // Journal of Industrial and Engineering Chemistry. 2018. Vol. 61. P. 1–11. DOI:https://doi.org/10.1016/j.jiec.2017.12.034. EDN: https://elibrary.ru/VEBPVC.

2. Margaritis A., Zajic J.E. Biotechnology review: mixing mass transfer and scale-up of polysaccharide fermentations // Biotechnology and Bioengineering. 1978. Vol. 20. P. 939–1001. DOI:https://doi.org/10.1002/bit. 260200702.

3. Netrusov A.I., Liyaskina E.V., Kurgaeva I.V., et al. Exopolysaccharides producing bacteria: a review // Microorganisms. 2023. Vol. 11. P. 1541. DOI:https://doi.org/10.3390/microorganisms11061541.

4. Ibrahim H.A.H., Abou Elhassayeb H.E., El-Sayed W.M.M. Potential functions and applications of diverse microbial exopolysaccharides in marine environments // Journal of Genetic Engineering and Biotechnology. 2022. Vol. 20, № 1. P. 151. DOI:https://doi.org/10.1186/s43141-022-00432-2.

5. Анализ размера и доли рынка ксантановой камеди – тенденции роста и прогнозы (2024–2029 гг.) Доступно по: https://mordorintelligence.com/ru/industry-reports/xanthan-gum-market. Ссылка активна на 27.01.2025.

6. Berninger T., Dietz N., González López Ó. Water‐soluble polymers in agriculture: xanthan gum as eco‐friendly alternative to synthetics // Microbial Biotechnology. 2021. Vol. 14, № 5. P. 1881–1896. DOI:https://doi.org/10.1111/1751-7915.13867.

7. Chang I., Lee M., Tran A.T.P., et al. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices // Transportation Geotechnics. 2020. Vol. 24. P. 100385. DOI:https://doi.org/10.1016/j.trgeo.2020.100385.

8. Becker A., Katzen F., Pühler A., et al. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Review // Applied Microbiology and Biotechnology. 1998. Vol. 50, № 2. P. 145–152. DOI:https://doi.org/10.1007/s002530051269.

9. García-Ochoa F., Santos V.E., Casas J.A., et al. Xanthan gum: production, recovery, and properties // Biotechnology Advances. 2000. Vol. 18, № 7. P. 549–579. DOI:https://doi.org/10.1016/S0734-9750(00)00050-1.

10. Rosalam S., England R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. // Enzyme and Microbial Technology. 2006. Vol. 39, № 2. P. 197–207. DOI:https://doi.org/10.1016/j.enzmictec.2005.10.019.

11. Barua R., Alam M.J., Salim M., et al. Small scale production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris // Indian Journal of Experimental Biology. 2016. Vol. 54, № 2. P. 151–155. Available at: http://nopr.niscpr.res.in/handle/123456789/33746. Accessed: 27.01.2025.

12. Kumar A., Rao K.M., Han S.S. Application of xanthan gum as polysaccharide in tissue engineering: A review // Carbohydrate Polymers. 2018. Vol. 180. P. 128–144. DOI:https://doi.org/10.1016/j.carbpol.2017.10.009.

13. Dey R., Chatterji B.P. Sources and methods of manufacturing xanthan by fermentation of various carbon sources // Biotechnology Progress. 2023. Vol. 39, № 6. P. e3379. DOI:https://doi.org/10.1002/btpr.3379.

14. Revin V.V., Liyaskina E.V., Parchaykina M.V., et al. Production of bacterial exopolysaccharides: xanthan and bacterial cellulose // International Journal of Molecular Sciences. 2023. Vol. 24, № 19. P. 14608. DOI:https://doi.org/10.3390/ijms241914608.

15. Efremenko E., Senko O., Maslova O., et al. Biocatalysts in synthesis of microbial polysaccharides: Properties and development trends // Catalysts. 2022. Vol. 12, № 11. P. 1377. DOI:https://doi.org/10.3390/catal 12111377.

16. В РФ заместят импорт важнейшего компонента для нефтяной и пищевой промышленности. Информагентство «Девон». Доступно по: https://iadevon.ru/news/oil/v_rf_zamestyat_import_vazhneyshego_komponenta_dlya_neftyanoy_i_pishchevoy_promishlennosti-13174. Ссылка активна на 03.02.2025.

17. Анализ рынка ксантановой камеди в России. Аналитический отчет DISCOVERY RESEARCH GROUP. Доступно по: https://drgroup.ru/components/com_jshopping/files/demo_products/Demo_Kamed.PDF. Ссылка активна на 02.02.2025.

18. Магадова Л.А., Потешкина К.А., Давлетшина Л.Ф., и др. Ксантан как универсальный полимер для нефтегазодобычи и продукт биотехнологии // Нефтегазовое дело. 2023. № 5. С. 55–82. DOI:https://doi.org/10.17122/ogbus-2023-5-55-82. EDN: https://elibrary.ru/KLOSBK.

19. de Souza E.R., Rodrigues P.D., Sampaio I.C., et al. Xanthan gum produced by Xanthomonas campestris using produced water and crude glycerin as an environmentally friendlier agent to enhance oil recovery // Fuel. 2022. Vol. 310. P. 122421. DOI:https://doi.org/10.1016/j.fuel.2021.122421.

20. Kamal M.S., Sultan A.S., Al-Mubaiyedh U.A., et al. Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems // Polymer Reviews. 2015. Vol. 55, № 3. P. 491–530. DOI:https://doi.org/10.1080/15583724.2014.982821

21. Gumus T., Sukru Demirci A., Mirik M., et al. Xanthan gum production of Xanthomonas spp. isolated from different plants // Food Science and Biotechnology. 2010. Vol. 19. P. 201–206. DOI: 10.1007/ s10068-010-0027-9.

22. Niknezhad S.V., Asadollahi M.A., Zamani A., et al. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii // International Journal of Biological Macromolecules. 2016. Vol. 82. P. 751–756. DOI:https://doi.org/10.1016/j.ijbiomac.2015.10.065.

23. Ramezani A., Jafari M., Goodarzi T., et al. Lactose consuming strains of Xanthomonas citri subsp. citri (Xcc) insight into the emergence of natural field resources for xanthan gum production // World Journal of Microbiology and Biotechnology. 2014. Vol. 30. P. 1511–1517. DOI:https://doi.org/10.1007/s11274-013-1571-2.

24. Lei S., Edmund T.F. Polysaccharides, microbial. In: Encyclopedia of Microbiology. 4th edition. Elsevier Inc., 2019. P. 660–678. DOI:https://doi.org/10.1016/b978-0-12-809633-8.13102-4.

25. Habibi H., Khosravi-Darani K. Effective variables on production and structure of xanthan gum and its food applications: A review // Biocatalysis and Agricultural Biotechnology. 2017. Vol. 10. P. 130–140. DOI:https://doi.org/10.1016/j.bcab.2017.02.013.

26. Letisse F., Lindley N.D., Roux G. Development of a phenomenological modeling approach for prediction of growth and xanthan gum production using Xanthomonas campestris // Biotechnology Progress. 2003. Vol. 19, № 3. P. 822–827. DOI:https://doi.org/10.1021/bp0257168.

27. Soleymanpour Z., Nikzad M., Talebnia F., et al. Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris // 3 Biotech. 2018. Vol. 8. P. 296. DOI:https://doi.org/10.1007/s13205-018-1322-z.

28. Ramos L.C., Jesus M.S., Pires P., et al. Optimization of xanthan gum production by demerara sugar using response surface methodology // Sustainability. 2023. Vol. 15, № 6. P. 5080. DOI:https://doi.org/10.3390/su15065080.

29. Vaishnav A., Upadhyay K., Koradiya M., et al. Valorisation of fruit waste for enhanced exopolysaccharide production by Xanthomonas campestries using statistical optimisation of medium and process // Food Bioscience. 2022. Vol. 46. P. 101608. DOI:https://doi.org/10.1016/j.fbio.2022.101608.

30. Davidson I.W. Production of polysaccharide by Xanthomonas campestris in continuous culture // FEMS Microbiology Letters. 1978. Vol. 3, № 6. P. 347–349.

31. Souw P., Demain A.L. Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459 // Applied and Environmental Microbiology. 1979. Vol. 37, № 6. P. 1186–1192.

32. Zhang J., Greasham R. Chemically defined media for commercial fermentations // Applied Microbiology and Biotechnology. 1999. Vol. 51. P. 407–421.

33. Garcá-Ochoa F., Santos V.E., Fritsch A.P. Nutritional study of Xanthomonas campestris in xanthan gum production by factorial design of experiments // Enzyme and Microbial Technology. 1992. Vol. 14, № 12. Р. 991–996.

34. Garcı́a-Ochoa F., Castro E.G., Santos V.E. Oxygen transfer and uptake rates during xanthan gum production // Enzyme and Microbial Technology. 2000. Vol. 27, № 9. P. 680–690.

35. Letisse F., Chevallereau P., Simon J.L. Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources // Applied Microbiology and Biotechnology. 2001. Vol. 55. P. 417–422.

36. Jeanes A., Rogovin P., Cadmus M.C., et al. Polysaccharide (xanthan) of Xanthomonas campestris NRRL B-1459: procedures of culture maintenance and polysaccharide production purification and analysis. US Department of Agriculture, Peoria, Illinois: Agricultural Research Service, 1976. Vol. NC-51. P. 1–14. Доступно по: https://archive.org/details/polysaccharidexa51jean. Ссылка активна на 03.02.2025.

37. Cadmus M.C., Rogovin S.P., Burton K.A., et al. Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain // Canadian Journal of Microbiology. 1976. Vol. 22, № 7. P. 942–948.

38. Cadmus M.C., Knutson C.A., Lagoda A.A., et al. Synthetic media for production of quality xanthan gum in 20-liter fermenters // Biotechnology and Bioengineering. 1978. Vol. 20, № 7. P. 1003–1014.

39. Souw P., Demain A.L. Role of citrate in xanthan production by Xanthomonas campestris // Journal of Fermentation Technology. 1980. Vol. 58, № 5. P. 411–416. Доступно по: http://dl.ndl.go.jp/info:ndljp/ pid/11076979. Ссылка активна на 03.02.2025.

40. Funahashi H., Yoshida T., Taguchi H. Effect of glucose concentration on xanthan gum production by Xanthomonas campestris // Journal of Fermentation Technology. 1987. Vol. 65, № 5. P. 603–606.

41. Slodki M.E., Cadmus M.C. Production of microbial polysaccharides // Advances in Applied Microbiology. 1978. Vol. 23. P. 19–54.

42. Smith I.H., Pace G.W. Recovery of microbial polysaccharides // Journal of Chemical Technology and Biotechnology. 1982. Vol. 32, № 1. P. 119–129.

43. Moraine R.A., Rogovin P. Kinetics of the xanthan fermentation // Biotechnology and Bioengineering. 1973. Vol. 15, № 2. P. 225–237.

44. Tait M.I., Sutherland I.W., Clarke-Sturman A.J. Effect of growth conditions on the production, composition and viscosity of Xanthomonas campestris exopolysaccharide // Microbiology. 1986. Vol. 132, № 6. P. 1483–1492.

45. Rogovin P., Albrecht W., Sohns V. Production of industrial‐grade polysaccharide B‐1459 // Biotechnology and Bioengineering. 1965. Vol. 7, № 1. P. 161–169.

46. Kennedy J.F., Jones P., Barker S.A., et al. Factors affecting microbial growth and polysaccharide production during the fermentation of Xanthomonas campestris cultures // Enzyme and Microbial Technology. 1982. Vol. 4, № 1. P. 39–43.

47. Shu C.H., Yang S.T. Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris // Biotechnology and Bioengineering. 1990. Vol. 3, № 5. P. 454–468.

48. Santos V.E. Produccio Ân de xantano. PhD thesis. Madrid, Spain: Universidad Complutense, 1993.

49. Garcia-Ochoa F., Santos V. E., Alcon A. Simulation of xanthan gum production by a chemically structured kinetic model // Mathematics and Computers in Simulation. 1996. Vol. 42, № 2-3. P. 187–195.

50. García-Ochoa F., Santos V.E., Alcon A. Xanthan gum production in a laboratory aerated stirred tank bioreactor // Chemical and Biochemical Engineering Quarterly. 1997. Vol. 11, № 2. P. 69–74. Доступно по: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2737433. Ссылка активна на 03.02.2025.

51. Chisti Y. Pneumatically agitated bioreactors in industrial and environmental bioprocessing: hydrodynamics, hydraulics and transport phenomena // Applied Mechanics Reviews. 1998. Vol. 51, № 1. P. 33–112.

52. Nakayama T., Amachi T. Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation. New York, John Willey, 1999. P. 1291–1305.

53. Shiram S., Venugopal P., Tungare A., et al. Optimization of xanthan gum fermentation utilizing food waste // Global Research and Development Journal for Engineering. 2021. Vol. 6, № 5. P. 19–29. Доступно по: https://academia.edu/download/66709392/GRDJEV06I050008.pdf. Ссылка активна на 03.02.2025.

54. Kadier A., Ilyas R.A., Huzaifah M.R.M., et al. Use of industrial wastes as sustainable nutrient sources for bacterial cellulose (BC) production: Mechanism, advances, and future perspectives // Polymers. 2021. Vol. 13, № 19. P. 3365.

55. Mohsin A., Zhang K., Hu J., et al. Optimized biosynthesis of xanthan via effective valorization of orange peels using response surface methodology: A kinetic model approach // Carbohydrate Polymers. 2018. Vol. 181. P. 793–800.

56. Demirci A.S., Palabiyik I., Apaydın D. et al. Xanthan gum biosynthesis using Xanthomonas isolates from wastebread: Process optimization and fermentation kinetics // LWT. 2019. Vol. 101. P. 40–47.

57. Li P., Zeng Y., Xie Y., et al. Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production // Bioresource Technology. 2017. Vol. 223. P. 84–90.

58. Jesus M., Mata F., Batista R.A., et al. Corncob as carbon source in the production of xanthan gum in different strains Xanthomonas sp. // Sustainability. 2023. Vol. 15, № 3. P. 2287.

59. Moosavi A., Karbassi A. Bioconversion of sugar‐beet molasses into xanthan gum // Journal of Food Processing and Preservation. 2010. Т. 34, № 2. С. 316–322.

60. Moravej R., Alavi S.M., Azin M., et al. Production and physicochemical characterization of xanthan gum by native lactose consuming isolates of Xanthomonas citri subsp. citri // Ukrainian Biochemical Journal. 2020. Vol. 92, № 1. P. 92–102.

61. Bajić B., Rončević Z., Puškaš V., et al. White wine production effluents used for biotechnological production of xanthan // Journal on Processing and Energy in agriculture. 2015. Vol. 19, № 1. P. 52–55. Доступно по: https://academia.edu/download/78321927/1821-44871501052B.pdf. Ссылка активна на 03.02.2025.

62. Rončević Z., Zahović I., Danilović N., et al. Potential of different Xanthomonas campestris strains for xanthan biosynthesis on waste glycerol from biodiesel production // Journal on Processing and Energy in Agriculture. 2020. Vol. 24, № 2. P. 62–66.

63. Wang Z., Wu J., Zhu L., et al. Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714 // Carbohydrate Polymers. 2017. Vol. 157. P. 521–526.

64. Wang Z., Wu J., Zhu L., et al. Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol // Bioresource Technology. 2016. Vol. 211. P. 390–397.

65. García-Ochoa F., Casas J.A., Mohedano A.F. Xanthan precipitation from solutions and fermentation broths // Separation Science and Technology. 1993. Vol. 28, № 6. P. 1303–1313.

66. Kennedy J.F., Bradshaw I.J. Production, properties and applications of xanthan // Progress in Industrial Microbiology. 1984. Vol. 19. P. 319–371. Доступно по: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9732503. Ссылка активна на 03.02.2025.

67. Galindo E., Albiter V. High‐yield recovery of xanthan by precipitation with isopropyl alcohol in a stirred tank // Biotechnology Progress. 1996. Vol. 12, № 4. P. 540–547.

68. García-Ochoa F., Casas J. A. Apparent yield stress in xanthan gum solution at low concentration // The Chemical Engineering Journal and the Biochemical Engineering Journal. 1994. Vol. 53, № 3. P. B41–B46.

69. Lo Y.M., Yang S.T., Min D.B. Effects of yeast extract and glucose on xanthan production and cells growth in batch culture of Xanthomonas campestris // Applied Microbiology and Biotechnology. 1997. Vol. 47. P. 689–694.

70. Lo Y.M., Yang S.T., Min D.B. Ultrafiltration of xanthan gum fermentation broth: Process and economic analyses // Journal of Food Engineering. 1997. Vol. 31, № 2. P. 219–236.

71. Ватолин А.К., Грошев В.М., Дерябин В.В., Офицеров Е.Н., Хусаинов Н.И. Способ получения ксантанового загустителя «Сараксан» или «Сараксан-Т». Патент РФ № 2252033. 20.05.2005. Бюл. № 14. Доступно по: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2252033&TypeFile=html. Ссылка активна на 11.06.2025.

72. Иванова М.А., Герман Л.С., Сенаторова В.Н., Вакар Л.Л., Нестеров В.А. Способ получения ксантана. Патент РФ № 2559553. 10.08.2015. Бюл. № 22. Доступно по: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2559553&TypeFile=html. Ссылка активна на 11.06.2025.

73. Шилова А.В. Штамм бактерии Xanthomonas campestris – продуцент ксантана. Патент РФ № 2639557. 21.12.2017. Бюл. № 36. Доступно по: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2639557&TypeFile=html. Ссылка активна на 11.06.2025.

74. Шилова А.В. Способ получения полисахаридной добавки на основе пищевой ксантановой камеди. Патент РФ № 2748947. 02.06.2021. Бюл. № 16. Доступно по: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2748947 &TypeFile=html. Ссылка активна на 11.06.2025.

75. Ревин В.В., Лияськина Е.В. Штамм бактерии Xanthomonas theicola – продуцент ксантана. Патент РФ № 2714638. 18.02.2020. Бюл. № 5. Доступно по: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2714638&TypeFile=html. Ссылка активна на 11.06.2025.

76. Revin V.V., Liyaskina E.V., Pokidko B.V., et al. Characteristics of the new xanthan-producing strain Xanthomonas campestris М 28: study of the genome, cultivation conditions, and physicochemical and rheological properties of the polysaccharide // Applied Biochemistry and Microbiology. 2021. Vol. 57, № 3. P. 356–365.

77. Саргин Б.В., Батарагин В.М., Бочкарев А.А. Штамм бактерий Xanthomonas fuscans – продуцент ксантановой камеди. Патент РФ № 2744107. 02.03.2021. Бюл. № 7. Доступно по: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber= 2744107&TypeFile=html. Ссылка активна на 11.06.2025.

78. Саргин Б.В., Батарагин В.М., Бочкарев А.А.Способ получения ксантановой камеди. Патент РФ № 2746229. 09.04.2021, Бюл. № 10. Доступно по: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2746229&TypeFile=html. Ссылка активна на 11.06.2025.

79. Алиев С. Кубанские ученые из вторсырья научились производить редкий загуститель. Доступно по: https://kubantv.ru/obshhestvo/kubanskie-ucenye-iz-vtorsyrya-naucilis-proizvodit-redkii-zagustitel. Ссылка активна на 27.01.2025.

80. Asase R., Seredovich D., Selezneva I., et al. Xanthan gum production using Xanthomonas campestris B6720: Fermentation process and application in fermented soymilk // BIO Web of Conferences. 2024. Vol. 121.

81. Xinzheng Q., Lei F., Xinping Y., Xinzheng F.Q. Fermentation technique for producing xanthan gum. China patent CN № 1539987A. 27.10.2004. Available at: https://patents.google.com/patent/CN1539987A/en?oq=CN1539987A. Accessed: 11.06.2025.

82. Hamilton Hamilton M.A., Dawkins G.S., Mellowes W.A. Xanthan gum production from sugarcane fluids. United States patent US № 2009232938A1. 17.09.2009. Available at: https://patents.google.com/patent/US20090232938A1/en?oq=US2009232938A1. Accessed: 11.06.2025.

83. Gleice G., Pacheco V., Vasconcellos L.B., Janice I.D. Use of yeast biomass as a substrate, supplemented or not, for the production of biopolymers like xanthan gum. British Patent BR № PI0803131A2. 19.01.2010. Available at: https://patents.google.com/patent/BRPI0803131A2/en? oq=BR+PI0803131A2. Accessed: 11.06.2025.

84. Li M., Chen J., Du J., Ren Y., Wang X., Shi Y., Si S., Zhu Y. Process for producing xanthan gum from boiler concentrated water from the power plant through fermentation. China patent CN № 103710408A. 09.04.2014. Available at: https://patents.google.com/patent/CN103710408A/en?oq= CN103710408A. Accessed: 11.06.2025.

85. Dong X., Zhang Y., Wang W., Zhang Y., Han H., Liu Y. Pigment-free Xanthomonas and application of pigment-free Xanthomonas in fermentation production of pigment-free xanthan gum. China patent CN № 114015612. 08.02.2022. Available at: https://patents.google.com/ patent/CN114015612A/en?oq= CN114015612. Accessed: 11.06.2025.

86. Bauer A.K., Khosrovi B. Process of using Xanthomonas campestris NRRL B-12075 and NRRL B-12074 for making heteropolysaccharide. United States patent US № 4400467A. 23.08.1983. Available at: https://patents.google.com/patent/US4400467A/en?oq=US4400467A. Accessed: 11.06.2025.

87. Sworn G., Kerdavid E., Chevallereau P., Fayos J. Improved xanthan gum. Patent WO № 2010112499A1. 07.10.2010. Available at: https://patents.google.com/patent/WO2010112499A1/ en?oq=WO2010112499A1. Accessed: 11.06.2025.

88. Weisrock W.P. Method for improving xanthan yield. United States patent US № 4301247A. 17.11.1981. Available at: https://patents.google.com/patent/US4301247A/en?oq=US4301247A. Accessed: 11.06.2025.

89. Murofushi K., Nagura S. Process for production of saline-solution soluble xanthan gum. United States patent US № 6194564B1. 27.02.2001. Available at: https://patents.google.com/patent/US6194564B1/en?oq=US6194564B1. Accessed: 11.06.2025.

90. Zhang Y., Zhang G., Zhang C., et al. Method for producing xanthan gum by using waste molasses or waste glucose mother liquor as raw material. China patent CN № 101240309A. 06.07.2011. Available at: https://patents.google.com/patent/CN101240309A/en?oq=CN101240309A. Accessed: 11.06.2025.

91. Barcelos M.C.S., Vespermann K.A.C., Pelissari F.M., et al. Current status of biotechnological production and applications of microbial exopolysaccharides // Critical Reviews in Food Science and Nutrition. 2019. Vol. 60, № 9. P. 1475–1495.

92. Petri D.F. Xanthan gum: A versatile biopolymer for biomedical and technological applications // Journal of Applied Polymer Science. 2015. Vol. 132, № 23. P. 42035.

93. Кудряшова О.А. Функционально-технологические свойства гидроколлоидов и их применение при производстве колбас // Мясные технологии. 2009. Т. 2. С. 12–17. Доступно по: https://meatbranch.com/publ/view/134.html. Ссылка активна на 03.02.2025.

94. Rather S.A., Masoodi F.A., Akhter R., et al. Xanthan gum as a fat replacer in goshtaba – a traditional meat product of India: effects on quality and oxidative stability // Journal of food science and technology. 2015. Vol. 52. P. 8104–8112.

95. Rather J.A., Akhter N., Rather S.A., et al. Effect of xanthan gum treatment on the shelf-life enhancement of retorted meatballs (Goshtaba): A traditional meat product of India // Measurement: Food. 2024. Vol. 13. P. 100127.

96. Hui Y.H., Corke H., De Leyn I., et al. Bakery products: science and technology. USA, Iowa, Ames: Wiley-Blackwell, 2008. 586 p.

97. Zheng M., Chen J., Tan K.B., et al. Development of hydroxypropyl methylcellulose film with xanthan gum and its application as an excellent food packaging bio-material in enhancing the shelf life of banana // Food Chemistry. 2022. Vol. 374. P. 131794.

98. Rukmanikrishnan B., Ismail F.R.M., Manoharan R.K., et al. Blends of gellan gum/xanthan gum/zinc oxide based nanocomposites for packaging application: rheological and antimicrobial properties // International journal of biological macromolecules. 2020. Vol. 148. P. 1182–1189.

99. Tabassum Z., Girdhar M., Kumar A., et al. ZnO nanoparticles-reinforced chitosan–xanthan gum blend novel film with enhanced properties and degradability for application in food packaging // ACS omega. 2023. Vol. 8, № 34. P. 31318–31332.

100. Tang S., Gong Z., Wang Z., et al. Multifunctional hydrogels for wound dressings using xanthan gum and polyacrylamide // International Journal of Biological Macromolecules. 2022. Vol. 217. P. 944–955.

101. Singh S., Nwabor O.F., Sukri D.M., et al. Poly (vinyl alcohol) copolymerized with xanthan gum/hypromellose/sodium carboxymethyl cellulose dermal dressings functionalized with biogenic nanostructured materials for antibacterial and wound healing application // International Journal of Biological Macromolecules. 2022. Vol. 216. P. 235–250.

102. Gutierrez-Reyes J.E., Caldera-Villalobos M., Claudio-Rizo J.A., et al. Smart collagen/xanthan gum-based hydrogels with antibacterial effect, drug release capacity and excellent performance in vitro bioactivity for wound healing application // Biomedical Materials. 2023. Vol. 18, № 3. P. 035011.

103. Unalan I., Schruefer S., Schubert D.W., et al. 3D-printed multifunctional hydrogels with phytotherapeutic properties: Development of essential oil-incorporated ALG-XAN hydrogels for wound healing applications // ACS Biomaterials Science & Engineering. 2023. Vol. 9, № 7. P. 4149–4167.

104. Liang Y., Chitrakar B., Liu Z., et al. Preparation and characterization of 3D-printed antibacterial hydrogel with benzyl isothiocyanate // International Journal of Bioprinting. 2023. Vol. 9, № 2. P. 671.

105. Alves A., Miguel S.P., Araujo A.R.T.S., et al. Xanthan gum-konjac glucomannan blend hydrogel for wound healing // Polymers. 2020. Vol. 12, № 1. P. 99.

106. Zuliani C.C., Damas I.I., Andrade K.C., et al. Chondrogenesis of human amniotic fluid stem cells in Chitosan-Xanthan scaffold for cartilage tissue engineering // Scientific Reports. 2021. Vol. 11, № 1. P. 3063.

107. Bueno V.B., Bentini R., Catalani L.H., et al. Synthesis and characterization of xanthan–hydroxyapatite nanocomposites for cellular uptake // Materials Science and Engineering: C. 2014. Vol. 37. P. 195–203.

108. Barbosa R.M., da Rocha D.N., Bombaldi de Souza R.F., et al. Cell-friendly chitosan-xanthan gum membranes incorporating hydroxyapatite designed for periodontal tissue regeneration // Pharmaceutics. 2023. Vol. 15, № 2. P. 705.

109. Souza A.P.C., Neves J.G., Navarro da Rocha D., et al. Chitosan/Xanthan membrane containing hydroxyapatite/Graphene oxide nanocomposite for guided bone regeneration // Journal of the Mechanical Behavior of Biomedical Materials. 2022. Vol. 136. P. 105464.

110. Souza A.P., Neves J.G., Navarro da Rocha D., et al. Chitosan/Xanthan/ Hydroxyapatite-graphene oxide porous scaffold associated with mesenchymal stem cells for dentin-pulp complex regeneration // Journal of Biomaterials Applications. 2023. Vol. 37, № 9. P. 1605–1616.

111. Singh A., Muduli C., Senanayak S.P., et al. Graphite nanopowder incorporated xanthan gum scaffold for effective bone tissue regeneration purposes with improved biomineralization // International Journal of Biological Macromolecules. 2023. Vol. 234. P. 123724.

112. Piola B., Sabbatini M., Gino S., et al. 3D Bioprinting of gelatin–xanthan gum composite hydrogels for growth of human skin cells // International Journal of Molecular Sciences. 2022. Vol. 23, № 1. P. 539.

113. Anwar M., Pervaiz F., Shoukat H., et al. Formulation and evaluation of interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system // Polymer Bulletin. 2021. Vol. 78. P. 59–80.

114. Jadav M., Pooja D., Adams D.J., et al. Advances in xanthan gum-based systems for the delivery of therapeutic agents // Pharmaceutics. 2023. Vol. 15, № 2. P. 402.

115. Kala S., Gurudiwan P., Juyal D. Formulation and evaluation of besifloxacin loaded in situ gel for ophthalmic delivery // Pharmaceutical and Biosciences Journal. 2018. Vol. 6. P. 36–40.

116. Garg R., Kumar V., Sharma V. Design and characterization of flucytosine loaded bioadhesive in situ ophthalmic gel for improved bioavailability // Pharmaceutical and Biosciences Journal. 2019. Vol. 7. P. 17–20.

117. Malik N.S., Ahmad M., Minhas M.U., et al. Chitosan/xanthan gum-based hydrogels as potential carrier for an antiviral drug: fabrication, characterization, and safety evaluation // Frontiers in chemistry. 2020. Vol. 8. P. 50.

118. Trombino S., Serini S., Cassano R., et al. Xanthan gum-based materials for omega-3 PUFA delivery: Preparation, characterization and antineoplastic activity evaluation // Carbohydrate Polymers. 2019. Vol. 208. P. 431–440.

119. Singh S., Kotla N.G., Tomar S., et al. A nanomedicine-promising approach to provide an appropriate colon-targeted drug delivery system for 5-fluorouracil // International Journal of Nanomedicine. 2015. Vol. 10. P. 7175–7182.

120. Furtado I.F.S.P.C., Sydney E.B., Rodrigues S.A., et al. Xanthan gum: applications, challenges, and advantages of this asset of biotechnological origin // Biotechnology Research and Innovation Journal. 2022. Vol. 6, № 1. P. e202204.

121. Khattab H., Gawish A.A., Hamdy A., et al. Assessment of a novel Xanthan gum-based composite for oil recovery improvement at reservoir conditions; assisted with simulation and economic studies // Journal of Polymers and the Environment. 2024. Vol. 32. P. 3363–3391.

122. Olabode O., Akinsanya O., Daramola O., et al. Effect of salt concentration on oil recovery during polymer flooding: simulation studies on xanthan gum and gum arabic // Polymers. 2023. Vol. 15, № 19. P. 4013.

123. Abu Elella M.H., Goda E.S., Gab-Allah M.A., et al. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review // Journal of Environmental Chemical Engineering. 2020. Vol. 9, № 1. P. 104702.

124. Dzionek A., Wojcieszyńska D., Guzik U. Use of xanthan gum for whole cell immobilization and its impact in bioremediation-a review // Bioresource Technology. 2022. Vol. 351. P. 126918.

125. Sorze A., Valentini F., Dorigato A., et al. Development of a xanthan gum based superabsorbent and water retaining composites for agricultural and forestry applications // Molecules. 2023. Vol. 28, № 4. P. 1952.

126. Kumar P., Kumar B., Gihar S., et al. Review on emerging trends and challenges in the modification of xanthan gum for various applications // Carbohydrate Research. 2024. Vol. 538. P. 109070.


Войти или Создать
* Забыли пароль?