ТРИТОРДЕУМ – ПЕРСПЕКТИВНАЯ ЗЕРНОВАЯ КУЛЬТУРА
Рубрики: АГРОНОМИЯ
Аннотация и ключевые слова
Аннотация (русский):
Цель исследования – привлечение внимания селекционеров, агрономов, технологов-пищевиков к созданному новому виду зернового злака тритордеум. Последний представляет собой гибрид дикого ячменя (Hordeum chilense Roem. et Schultz.) и твердой пшеницы (Triticum turgidum L. subsp. durum Desf.). В кратком обзоре современной литературы представлена разносторонняя характеристика данной зерновой культуры, приводятся результаты анализа особенностей ее химического состава. На основе результатов изучения физиолого-биохимических и потребительских свойств данного инновационного злака продемонстрирована его повышенная способность адаптироваться к экстремальным условиям окружающей среды и возможность успешного применения зерна в пищевой промышленности, в частности при выпечке хлеба и производстве макаронных изделий. Морфологически и агрономически тритордеум похож на пшеницу, но по сравнению со своим предшественником он обладает более высокой способностью усваивать из почвы азот, лучше растет в более жарких и сухих условиях, отличается повышенной засухоустойчивостью и эффективностью использования воды. Кроме того, в зерне новой культуры содержится существенно больше белка, каротиноидов, глицин бетаина, пищевых волокон и минеральных элементов, чем в мягкой и твердой пшенице. Белок тритордеума обладает более высокой усвояемостью в организме человека, что связано с меньшим содержанием в нем глиадинов, которые способны вызывать аллергию на глютен и провоцировать целиакию. Поскольку новый гибридный злак обладает высокой питательной и функциональной ценностью, его можно успешно использовать в производстве пищевых продуктов, предназначенных для здорового питания населения. Предлагаемый обзор современной научной литературы может служить ценным источником информации для исследователей, агрономов и производителей продуктов питания из зернового сырья, заинтересованных в изучении потенциала новой культуры тритордеума.

Ключевые слова:
дикий ячмень, твердая пшеница, зерно, засухоустойчивость, белок, каротиноиды, пищевые волокна, глицин бетаин, макроэлементы, хлебобулочные изделия
Список литературы

1. Suchowilska E., Kandler W., Wiwart M., et al. Is Tritordeum (×Tritordeum martinii A. Pujadas, nothosp. nov.) grain a potentially useful source of essential minerals in the human diet? // Journal of Food Composition and Analysis. 2023. Vol. 115. 104874. DOI:https://doi.org/10.1016/j.jfca.2022.104874. EDN: https://elibrary.ru/IUZKKY.

2. Maghrebi M., Marín-Sanz M., Begona M., et al. The drought-induced plasticity of mineral nutrients contributes to drought tolerance discrimination in durum wheat // Plant Physiology and Biochemistry. 2024. Vol. 215. 109077. DOI:https://doi.org/10.1016/j.plaphy.2024.109077. EDN: https://elibrary.ru/JONREV.

3. Avila C.M., Rodríguez-Suarez C., Atienza S.G. Tritordeum: creating a new crop species — the successful use of plant genetic resources // Plants. 2021. Vol. 10. 1029. DOI:https://doi.org/10.3390/plants10051029. EDN: https://elibrary.ru/PKUVNS.

4. Martı́n A., Alvarez J.B., Martı́n L.M., et al. The Development of Tritordeum: A Novel Cereal for Food Processing // Journal of Cereal Science. 1999. Vol. 30, № 2. P. 85–95. DOI:https://doi.org/10.1006/jcrs.1998.0235.

5. Papadopoulos G., Mavroeidis A., Stavropoulos P., et al. Tritordeum: a versatile and resilient cereal for Mediterranean agriculture and sustainable food production // Cereal Research Communications. 2023. № 6. P. 401–406. DOI:https://doi.org/10.1007/s42976-023-00401-6. EDN: https://elibrary.ru/GEAKIS.

6. Yoldi-Achalandabaso A., Agirresarobe A., Katamadze A., et al. Tritordeum, barley landraces and ear photosynthesis are key players in cereal resilience under future extreme drought conditions // Plant Stress. 2025. Vol. 15, № 3. 100765. DOI:https://doi.org/10.1016/j.stress.2025.100765 t.

7. Ballesteros J., Ramírez M., Martínez C., et al. Bread-making quality in hexaploid tritordeum with substitutions involving chromosome 1D // Plant Breeding. 2003. Vol. 122, № 1. P. 89–91. DOI:https://doi.org/10.1046/j. 1439-0523.2003.00806.x. EDN: https://elibrary.ru/BFCMQD.

8. Polonskiy V., Loskutov I., Sumina A. Biological role and health benefits of antioxidant compounds in cereal // Biological Communications. 2020. Vol. 65, № 1. P. 53–67. DOI:https://doi.org/10.21638/spbu03.2020.105. EDN: https://elibrary.ru/UCFLXQ.

9. Mattera M., Hornero-Méndez D., Atienza S.G. Carotenoid content in tritordeum is not primarily associated with esterification during grain development // Food Chemistry. 2020. Vol. 310, № 4. 125847. DOI:https://doi.org/10.1016/j.foodchem.2019.125847t. EDN: https://elibrary.ru/AAHHMZ.

10. Martin А., Sanchez-Mongelaguna Е. Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum // Euphytica. 1981. Vol. 31. P. 261–267.

11. Różewicz M., Wyzińska M. Characteristics of Tritordeum and evaluation of its potential for cultivation in Poland, with considerations for the nutritional and fodder value of the grains // Polish Journal of Agronomy. 2021. Vol. 44. P. 15–21. DOI:https://doi.org/10.1007/978-94-009-0329-6_106.

12. Villegas D., Casadesús J., Atienza S.G., et al. Tritordeum, wheat and triticale yield components under multi-local mediterranean drought conditions // Field Crop Research. 2010. Vol. 116, № 1-2. P. 68–74. DOI:https://doi.org/10.1016/j.fcr.2009.11.012.

13. Suchowilska E., Wiwart M., Sulyok M., et al. Mycotoxin profiles and plumpness of Tritordeum grain after artificial spike inoculation with Fusarium culmorum W.G. Smith // International Journal of Food Microbiology. 2025. Vol. 427, № 16. 110963. DOI:https://doi.org/10.1016/j.ijfoodmicro.2024.110963. EDN: https://elibrary.ru/FKAHHS.

14. Martín L.M., Alvarez J.B. Use of interspecific hybridisation in quality improvement of cereals. In: Durum wheat improvement in the Mediterranean region: New challenges. Zaragoza: CIHEAM; 2000. P. 447–454.

15. Kyrgiakis C., Sakka M.K., Athanassiou C.G. Population growth of different stored product species on wheat, barley, and tritordeum // Food Bioscience. 2024. Vol. 61, № 10. 104698. DOI:https://doi.org/10.1016/j.fbio. 2024.104698. EDN: https://elibrary.ru/QPVXUN.

16. Landolfi V., Blandino M. Minor Cereals and New Crops: Tritordeum // Sustainable Food Science – A Comprehensive Approach. 2023. Vol. 2. P. 83–103. DOI:https://doi.org/10.1016/B978-0-12-823960-5.00023-8.

17. Gallardo M., Fereres E. Growth, grain yield and water use efficiency of tritordeum in relation to wheat // European Journal of Agronomy. 1993. Vol. 2, № 2. P. 83–91. DOI:https://doi.org/10.1016/S1161-0301(14)80137-8.

18. Montesano V., Negro D., De Lisi A., et al. Agronomic performance and phenolic profile of Tritordeum ( Tritordeum martini A. Pujadas) lines // Cereal Chemistry. 2021. Vol. 98, № 2. P. 382–391. DOI:https://doi.org/10.1007/978-94-009-0329-6_10610.1002/cche.10378. EDN: https://elibrary.ru/CWHZGR.

19. Suchowilska E., Wiwart M., Przybylska-Balcerek A. The profile of bioactive compounds in the grain of various Tritordeum genotypes // Journal of Cereal Science. 2021. Vol. 102, № 11. 103352. DOI:https://doi.org/10.1016/j.jcs.2021.103352. EDN: https://elibrary.ru/DNIQAQ.

20. Martínez-Peña R., Schleret A., Höhne M., et al. Source-sink dynamics in field-grown durum wheat under contrasting nitrogen supplies: key role of non-foliar organs during grain filling // Frontiers of Plant Science. 2022. Vol. 22. 869680. DOI:https://doi.org/10.3389/fpls.2022.869680. EDN: https://elibrary.ru/AQQZFI.

21. Molero G., Reynolds M.P. Spike photosynthesis measured at high throughput indicates genetic variation independent of flag leaf photosynthesis // Field Crops Research. 2020. Vol. 255, № 6. 107866. DOI:https://doi.org/10.1016/j.fcr.2020.107866. EDN: https://elibrary.ru/NKSNXN.

22. Sanchez-Bragado R., Vicente R., Molero G., et al. New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis // Current Opinion of Plant Biology. 2020. Vol. 56. P. 223–234. DOI:https://doi.org/10.1016/j.pbi.2020.01.001. EDN: https://elibrary.ru/RDZIDU.

23. Gozzi M., Blandino M., Bruni R., et. al.•Mycotoxin occurrence in kernels and straws of wheat, barley, and tritordeum // Mycotoxin Research. 2024. Vol. 40. P. 203–210. DOI:https://doi.org/10.1007/s12550-024-00521-w. EDN: https://elibrary.ru/HIELRI.

24. Rodríguez-Suárez C., Dolores M., Requena-Ramírez E., et al. Prospects for tritordeum (х Tritordeum martinii A. Pujadas, Nothosp. Nov.) cereal breeding: Key points for future challenges // Plant Breeding. 2024. № 7. P. 1–10. DOI:https://doi.org/10.1111/pbr.13207.

25. Barro F., Fontes A.G., Maldonado J.M. Nitrate Uptake and Reduction by Durum Wheat (Triticum turgidum) and Tritordeum (Hordeum chilense x Triticum turgidum) // Journal of Plant Physiology. 1994. Vol. 143, № 3. P. 313–317. DOI:https://doi.org/10.1016/S0176-1617(11)81637-8.

26. Alvarez J.B., Martin L.M. Breadmaking Quality in Tritordeum: The Use-Possibilities of a New Cereal. In: Güedes-Pinto H., Darvey N., Carnide V.P., editors. Triticale: today and tomorrow. Publisher: Kluwer Academic Publishers, 1996. P. 799–805. DOI:https://doi.org/10.1007/978-94-009-0329-6_106.

27. Erlandsson A. Tritordeum. Evaluation of a new food cereal. In: Thesis, Swedish University of Agricultural Sciences, Uppsala, 2010. Available at: https://www.slu.se/en/departments/plant-breeding/education/msc-projects. Accessed: 12 Nov 2024.

28. Giordano D., Reyneri A., Locatelli M., et al. Distribution of bioactive compounds in pearled fractions of tritordeum // Food Chemistry. 2019. Vol. 15, № 301. 125228. DOI:https://doi.org/10.1016/j.foodchem.2019.125228.

29. Paznocht L., Kotíková Z., Šulc M., et al. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains // Food Chemistry. 2018. Vol. 240, № 1. P. 670–678. DOI:https://doi.org/10.1016/j. foodchem.2017.07.151.

30. Requena-Ramírez M.D., Rodríguez-Suarez C., Hornero-Mendez D., et al. // Lutein esterification increases carotenoid retention in durum wheat grain. A step further in breeding and improving the commercial and nutritional quality during grain storage // Food Chemistry. 2024. Vol. 435. 137660. DOI:https://doi.org/10.1016/j.foodchem.2023.137660. EDN: https://elibrary.ru/MFAKUZ.

31. Navas-Lopez J.F., Ostos-Garrido F.J., Castillo A., et al. Phenolic content variability and its chromosome location in tritordeum // Frontiers in Plant Science. 2014. Vol. 5, № 1. P. 1–10. DOI: 10.3389/ fpls.2014.00010.

32. Sardella C., Burešová B., Kotíková Z., et al. Influence of Agronomic Practices on the Antioxidant Compounds of Pigmented Wheat (Triticum aestivum spp. Aestivum L.) and Tritordeum (× Tritordeum martinii A. Pujadas, nothosp. nov.) Genotype // Journal of Agricultural and Food Chemistry. 2023. Vol. 71, № 36. P. 13220–13233. DOI:https://doi.org/10.1021/acs.jafc.3c02592. EDN: https://elibrary.ru/FEXWCP.

33. Lachman J., Hejtmánková A., Orsák M., et al. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley // Food Chemistry. 2018. Vol. 240, № 1. P. 725–735. DOI:https://doi.org/10.1016/j.foodchem. 2017.07.123.

34. Shewry P.R., Brouns F., Dunn J., et al. Comparative compositions of grain of tritordeum, durum wheat and bread wheat grown in multi-environment trials // Food Chemistry. 2023. Vol. 423. 136312. DOI:https://doi.org/10.1016/j.foodchem.2023.136312. EDN: https://elibrary.ru/SWGKJU.

35. Martinek P., Ohnoutková L., Vyhnánek T., et al. Characteristics of wheat-barley hybrids (×Tritordeum Ascherson et Graebner) under Central-European climatic conditions. // Biuletyn IHAR. 2003. Vol. 226/227. P. 87–95.

36. Wood P.J. Cereal β-glucans in diet and health // Journal of Cereal Science. 2007. Vol. 46. P. 230–238.

37. Lukinac J., Juki M. Barley in the Production of Cereal-Based Products // Plants. 2022. Vol. 11. P. 3519. DOI:https://doi.org/10.3390/plants11243519. EDN: https://elibrary.ru/KVZVAV.

38. Rakha A., Saulnier L., Åman P., et al. Enzymatic fingerprinting of arabinoxylan and β-glucan in triticale, barley and tritordeum grains // Carbohydrate Polymers. 2012. Vol. 90, № 3. P. 1226–1234. DOI:https://doi.org/10.1016/j.carbpol.2012.06.054.

39. Nitride C., D’Auria G., Dente A., et al. Tritordeum as an Innovative Alternative to Wheat: A Comparative Digestion Study on Bread. // Molecules. 2022. Vol. 27. P. 1308. DOI:https://doi.org/10.3390/molecules2704 1308. EDN: https://elibrary.ru/PJKFIG.

40. Mamone G., Iacomino G. Comparison of the in vitro toxicity of ancient Triticum monococcum varieties ID331 and Monlis // International Journal of Food Science Nutrition. 2018. Vol. 69. P. 954–962. DOI:https://doi.org/10.1080/09637486.2018.1444019.

41. Singla D., Malik T., Singh A., et al. Advances in understanding wheat-related disorders: A comprehensive review on gluten-free products with emphasis on wheat allergy, celiac and non-celiac gluten sensitivity // Food Chemistry Advances. 2024. Vol. 4, № 6. 100627. DOI:https://doi.org/10.1016/j.focha.2024. 100627. EDN: https://elibrary.ru/IQFBOM.

42. Kakabouki I., Beslemes D.F., Tigka E.L., et al. Performance of Six Genotypes of Tritordeum Compare to Bread Wheat under East Mediterranean Condition // Sustainability. 2020. Vol. 12. 9700. DOI:https://doi.org/10.3390/su12229700. EDN: https://elibrary.ru/GSIZPP.

43. Shewry P.R., Hey S.J. Do we need to worry about eating wheat? // Nutrition Bulleten. 2016. Vol. 41. P. 6–13. DOI:https://doi.org/10.1111/nbu.12186.

44. Vaquero L., Comino I., Vivas S., et al. Tritordeum: A novel cereal for food processing with good acceptability and significant reduction in gluten immunogenic peptides in comparison with wheat // Journal of the Science of Food and Agriculture. 2018. Vol. 98, № 6. P. 2201–2209. DOI:https://doi.org/10.1002/jsfa.8705.

45. Dingeo C., Difonzo G., Paradiso V.M., et al. Type-I Sourdough to Produce Gluten-Free Muffin // Microorganisms. 2020. Vol. 8, № 8. 1149. DOI:https://doi.org/10.3390/microorganisms8081149. EDN: https://elibrary.ru/SCDSKB.

46. Susana Sánchez-León S., Haro C., Villatoro M., et al. Tritordeum breads are well tolerated with preference over gluten-free breads in non-celiac wheat-sensitive patients and its consumption induce changes in gut bacteria // Journal of the Science of Food and Agriculure. 2021. Vol. 101. P. 3508–3517.

47. Landolfi V., Giovanni D., Nicolai M.A., et al. The effect of nitrogen fertilization on the expression of protein in wheat and tritordeum varieties using a proteomic approach // Food Research International. 2021. Vol. 148, № 10. 110617. DOI:https://doi.org/10.1016/j.foodres.2021.110617. EDN: https://elibrary.ru/PQSALM.

48. Arora K., Gaudioso G., Solovyev P., et al. In vitro faecal fermentation of Tritordeum breads and its effect on the human gut health // Current Research in Microbial Sciences. 2024. Vol. 6. 100214. DOI:https://doi.org/10.1016/j.crmicr.2023.100214. EDN: https://elibrary.ru/DDFBJV.

49. Russo F., Riezzo G., Orlando A., et al. A Comparison of the Low-FODMAPs Diet and a Tritordeum-Based Diet on the Gastrointestinal Symptom Profile of Patients Suffering from Irritable Bowel Syndrome-Diarrhea Variant (IBS-D): A Randomized Controlled Trial // Nutrients. 2022. Vol. 14, № 8. P. 1544. DOI:https://doi.org/10.3390/nu14081544. EDN: https://elibrary.ru/RMSGWY.

50. Russo F., Riezzo G., Linsalata M., et al. Managing Symptom Profile of IBS-D Patients With Tritordeum-Based Foods: Results From a Pilot Study // Frontiers of Nutrition. 2022. Vol. 9. 797192. DOI:https://doi.org/10.3389/fnut.2022.797192. EDN: https://elibrary.ru/NNCMQS.

51. Riezzo G., Prospero L., Orlando A., et al. A Tritordeum-Based Diet for Female Patients with Diarrhea-Predominant Irritable Bowel Syndrome: Effects on Abdominal Bloating and Psychological Symptoms // Nutrients. 2023. Vol. 15. 1361. DOI:https://doi.org/10.3390/nu15061361. EDN: https://elibrary.ru/QTVGPG.

52. Visioli G., Lauro M., Vamerali T., et al. Comparative Study of Organic and Conventional Management on the Rhizosphere Microbiome, Growth and Grain Quality Traits of Tritordeum // Agronomy. 2020. Vol. 10. 1717. DOI:https://doi.org/10.3390/agronomy10111717. EDN: https://elibrary.ru/JYIBTJ.

53. De Caro S., Antonella Venezia A., Di Stasio L., et al. Tritordeum: Promising Cultivars to Improve Health // Foods. 2024. Vol. 13, № 5. P. 661–669. DOI:https://doi.org/10.3390/foods13050661. EDN: https://elibrary.ru/LHTENQ.

54. Alvarez J.B., Ballesteros J., Sillero J.A. et al. Tritordeum: a new crop of potential importance in the food industry // Hereditus. 1992. Vol. 116. P. 193–197.

55. Alvarez J.B., Ballesteros J., Arriaga H.O., et al. The Rheological Properties and Baking Performances of Flours from Hexaploid Tritordeums // Journal of Cereal Science. 1995. Vol. 21, № 3. P. 291–299. DOI:https://doi.org/10.1006/jcrs.1995.0032.

56. Berski W., Zdaniewicz M., Sabat R., et al. Technological Properties of Tritordeum Starch // Applied Science. 2024. Vol. 14, 4999. DOI:https://doi.org/10.3390/app14124999. EDN: https://elibrary.ru/OSOBOM.

57. Wang S., Li C., Copeland L., et al. Starch Retrogradation: A Comprehensive Review // Comprehensive Reviews in Food Science and Food Safety. 2015. Vol. 14, № 5. P. 568–585. DOI:https://doi.org/10.1111/1541-4337.12143.

58. Zdaniewicz M., Pater A., Hrabia O., et al. Tritordeum malt: An innovative raw material for beer production // Journal of Cereal Science. 2020. Vol. 96, N11. 103095. DOI:https://doi.org/10.1016/j.jcs.2020.103095. EDN: https://elibrary.ru/JYSRZS.

59. Nocente F., Natale C., Galassi E., et al. Using Einkorn and Tritordeum Brewers’ Spent Grain to Increase the Nutritional Potential of Durum Wheat Pasta // Foods. 2021. Vol. 10, № 3. 502. DOI:https://doi.org/10.3390/foods10030502. EDN: https://elibrary.ru/OJVARM.

60. Gobbetti M., De Angelis M., Di Cagno R., et al. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo- cereals and milling by-products in baking industry // Critical Revews of Food Science Nutrition. 2020. Vol. 60. P. 2158–2173. DOI:https://doi.org/10.1080/10408398. 2019.1631753. EDN: https://elibrary.ru/ORZEBP.


Войти или Создать
* Забыли пароль?