The two-stage L-stable method of the second order for solving the implicit systems is developed. The method differs from the classical schemes by the approximate finding of the solution derivative. The numerical modeling results of the chemical reaction kinetics are presented.
differential-algebraic problem, the method of Rosenbrock type, chemical kinetics
1. Hayrer E., Vanner G. Reshenie obyknovennyh differencial'nyh uravneniy. Zhestkie i differencial'no-algebraicheskie zadachi. - M.: Mir, 1999. - 685 s.
2. Hayrer E., Nersett S., Vanner G. Reshenie obyknovennyh differencial'nyh uravneniy. Nezhestkie zadachi. - M.: Mir, 1990. - 512 s.
3. Gear C.W., Petzold L. ODE methods for solution differential-algebraic systems // SIAM J. Numerical Analysis. - 1984. - Vol. 21, № 4. - P. 716-728.
4. Novikov E.A., Shornikov Yu.V. Komp'yuternoe modelirovanie zhestkih gibridnyh sistem. - Novosibirsk: Izd-vo NGTU, 2012. - 451 s.
5. Rosenbrock H.H. Some general implicit processes for the numerical solution of differential equations // Computer. - 1963. - № 5. - P. 329-330.
6. Novikov E.A., Yumatova L.A. Nekotorye metody resheniya obyknovennyh differencial'nyh uravneniy, nerazreshennyh otnositel'no proizvodnoy //DAN SSSR. - 1987. - T. 295, № 4. - S. 809-812.
7. Demidov G.V., Novikov E.A. Ocenka oshibki odnoshagovyh metodov integrirovaniya obyknovennyh differencial'nyh uravneniy // Chislennye metody mehanicheskoy sploshnoy sredy. - 1985. - T. 16, №1. - S. 27-39.
8. Novikov E.A. Yavnye metody dlya zhestkih sistem. - Novosibirsk: Nauka, 1997. - 197 s.
9. Mazzia F., Magherini C. Test set for initial value problem solvers. - Department of mathematics University of Bari, Italy, 2008. - 295 p.