CALCULATION OF EPR G-TENSORS IN THE DOUGLAS-KROLL-KOHN-SHAM METHOD
Abstract and keywords
Abstract (English):
An approach to calculate g-tensors of electronic paramagnetic resonance spectroscopy of the sys-tems with doublet spin states based on two compo-nent Douglas-Kroll-Kohn-Sham scheme as imple-mented in the package of quantum-chemical pro-grams ParaGauss is presented. The scheme uses the self consistent two component eigenfunctions of the Hamiltonian with terms directly responsible for the spin-orbit interaction. Therefore g-tensor components are determined as expectation values given by the perturbation theory in the first order with respect to the external magnetic field with the uniform Bko components, and namely g-tensors components are calculated with use of matrix ele-ments of Bko derivatives of theDouglas-Kroll meth-od adopted Zeeman Hamiltonian. In the restricted open-shell Kohn-Sham (ROKS) approximation g-tensor components are given via matrix elements of the of the Kramers doublet relativistic wave func-tions ϕ1 and ϕ2. Results of test calculations for such radicals as CO+, CN, NO2, NF2, HCO, C3H5, TiF3, RhC, PdH are presented. The general fea-tures of measured in EPR spectra g-tensor chemi-cal shifts, directions and relative magnitudes of dif-ferent magnitudes are reproduced. However, for the main groups inorganic molecules g-tensor components are systematically too anisotropic. This is connected with an overestimation of the spin-orbit interaction strengths as a main factor. For im-proved description of the spin-orbit interaction strength the two electron contributions to the matrix transformations of DK scheme connecting real and impulse space constructs should be taken into ac-count. For presently developed calculational scheme theoretical values correlate with measured g-tensor shift with a systematic error corrections.

Keywords:
quantum chemical calculation, Doug-las-Kroll approach, first-order calculation of EPR g-tensors
Text
Text (PDF): Read Download
References

1. Anikienko T.I. Himicheskiy i aminokislot-nyy sostav travyanoy muki iz topinambura // Vestn. KrasGAU. - 2007. - № 6(21). - S. 151-154.

2. Strupan E.A., Tipsina N.N. Osnovnye napravleniya povysheniya pischevoy cennosti konditerskih izdeliy // Vestn. KrasGAU. - 2007. - № 6(21). - S. 271-275.

3. URL: http://www.epr-spectrometer.ru / Doc / Is-sledovanie _sroka_godnosti_piva.pdf.

4. Nasluzov V.A. Razvitie i primenenie ras-chetnyh shem metoda funkcionala plotnosti dlya modelirovaniya atomov i mikroklaste-rov d-metallov, zakreplennyh na poverhno-sti oksidnyh podlozhek: avtoref. dis. … d-ra him. nauk. - Krasnoyarsk: Izd-vo IHiHT RAN, 2012. - 14 s.

5. Barysz M., Sadlej A.J. Expectation values of operators in approximate two-component relativ-istic theories // Theor. Chem. Accounts: Theory, Computation, and Modeling (Theor. Chim. Ac-ta). - 1997. - V. 97, № 1. - P. 260-270.

6. Mayer M., Krüger S., Rösch N. A two-component variant of the Douglas-Kroll relativ-istic linear combination of Gaussian-type orbitals density-functional method: Spin-orbit effects in atoms and diatomics // J. Chem. Phys. - 2001. - V. 115, № 10. - P. 4411-4423.

7. Rösch N., Krüger S., Mayer M. et al. The Doug-las-Kroll-Hess Approach to Relativistic Density Functional Theory: Methodological Aspects and Applications to Metal Complexes and Clusters // Recent Developments and Applications of Mod-ern Density Functional Theory. Theoretical and Computational Chemistry. / ed. Seminario J. - Amsterdam: Elsevier, 1996. - V. 4. - P. 497-566.

8. Van Lenthe E., Wormer P.E.S., Van der Avoird A. Density functional calculations of molecular g-tensors in the zero-order regular approxima-tion for relativistic effects // J Chem. Phys. - 1997. - V. 107, № 7. - P. 2488-2498.

9. Knight Jr. L.B., Steadman J. An experimental procedure for ESR studies of rare gas matrix isolated molecular cation radicals: 12CO+ , 13CO+ , 14NH3+ , and 15NH3+ // J. Chem. Phys. - 1982. - V. 77, № 4. - P. 1750-1756.

10. Adrian F.J., Bowers V.A. g-tensor and spin doubling constant in the 2Σ molecules CN and C2H // Chem. Phys. Lett. 1976. - V. 41, № 3. - P. 517-520.

11. Brown J.M., Steimle T.C., Coles M.E. et al. A determination of the spin-rotation parameters for NO2 in the 2A1 state by microwave-optical double resonance // J. Chem. Phys. - 1981. - V. 74, № 7. - P. 3668-3672.

12. De Vore T.C., Weltner W. Titanium difluoride and titanium trifluoride molecules: electron spin resonance spectra in rare-gas matrices at 4 K // J. Am. Chem. Soc. - 1977. - V. 99, № 14. - P. 4700-4703.

13. Schreckenbach G., Ziegler T. Calculation of the g-Tensor of Electron Paramagnetic Resonance Spectroscopy Using Gauge-Including Atomic Orbitals and Density Functional Theory // J. Phys. Chem. A. - 1997. - V. 101, № 18. - P. 3388-3399.

14. Weltner W.Jr. Magnetic Atoms and Molecules. New York: Van Nostrand Reinhold, 1983.

15. Maier G., Reisenauer H.P., Rohnde B. g-tensor and spin doubling constant in the molecules C3H5 // Chem. Ber. 1983. - V. 116, P. 732.

16. Neyman K.M., Ganyushin D.I., Matveev A.V. et al. Calculation of Electronic g-Tensors Using a Relativistic Density Functional Douglas Kroll Method // J. Phys. Chem. A. - 2002. - V. 106, № 19. - P. 5022-5030.


Login or Create
* Forgot password?