ИСПОЛЬЗОВАНИЕ БИОКАТАЛИЗА ДЛЯ ПОЛУЧЕНИЯ ПИЩЕВЫХ ИНГРЕДИЕНТОВ НА ОСНОВЕ РАЗЛИЧНЫХ ВИДОВ ЗЕРНОВОГО СЫРЬЯ
Аннотация и ключевые слова
Аннотация (русский):
Цель работы – разработка приемов эффективной биотехнологической трансформации зерновых видов сырья для получения новых пищевых ингредиентов. Исследован химический состав различных видов зернового сырья по основным полимерам, а также количественному содержанию фитиновой кислоты. Проведены исследования по подбору различных ферментных систем для гидролиза зернового сырья с целью последующего использования ферментолизата в качестве функционального ингредиента в пищевых продуктах. В процессе работы исследовали пять различных вариантов ферментативной обработки, содержащие ферменты: протеазы, альфа- и глюкоамилазы, липазы и фитазы для биоконверсии различных видов зерна. Установлено, что максимальную степень гидролиза обеспечивает использование комплекса, проявляющего протеолитическую, целлюлолитическую, фитолитическую и липазную гидролитические способности. В процессе ферментативной обработки выявлено максимальное увеличение низкомолекулярных продуктов гидролиза сырья: аминокислот – на 20–40 %, редуцирующих веществ – на 40–60 % и снижение фитиновых веществ – на 20–45 % при воздействии ферментной системы (вариант 5).Использование данного ферментного комплекса позволит увеличить пищевую и биологическую ценность ингредиентов, снизить антипитательные свойства за счет снижения фитиновой кислоты и увеличения доступности микроэлементов для усвоения организмом. На основании экспериментальных данных разработана блок-схема получения ингредиентов с улучшенными свойствами. Получаемые на основе представленной технологии ингредиенты могут быть использованы в приготовлении пищевых продуктов функционального и профилактического назначения.

Ключевые слова:
ферментолизат, аминокислоты, фитин, ферменты, зерновое сырье, ингредиенты
Текст
Текст (PDF): Читать Скачать

Введение. Агропромышленный комплекс России на данный момент времени имеет перспективы переработки сельскохозяйственной продукции до 100 млн т. Эффективность перехода переработки сырья на инновационные технологии ресурсосбережения, сохранение и создание новых производств, экологическая составляющая – главные конкурентоспособные позиции России в современных пищевых технологиях. Биотехнологические процессы позволяют интенсифицировать технологические процессы, увеличивать выход готовой продукции и разрабатывать новые виды функциональных пищевых ингредиентов [1].

Зерновое сырье – один из возможных экономически перспективных видов сырья, высокомолекулярные полимеры которого имеют многокомпонентный состав, определяющий биотехнологические условия их переработки [2–4].

Практически во всех видах зерна присутствуют фитиновая кислота и ее соли фитаты [5–7]. Фитат является основной формой хранения фосфора во многих растительных тканях, особенно в отрубях и семенах. Он может образовывать комплексы с металлами или белками и, следовательно, снижать их биодоступность в желудочно-кишечном тракте [8–10].

Белки злаковых имеют ряд недостатков, а именно: невысокую степень усвояемости, неполноценный аминокислотный скор, низкую степень перевариваемости, токсические компоненты и антипитательные факторы. Фитаты, как компонент, относятся к этому числу.

Для снижения их токсических и антипитательных свойств и увеличения количества биологически активных веществ и пищевой ценности существуют различные методы обработки зернового сырья (проращивание, вымачивание и ферментативная обработка) [11–13].

Цель исследования – разработка приемов эффективной биокаталитической трансформации зернового сырья для получения новых пищевых ингредиентов заданного состава.

Задачи: получить новые пищевые ингредиенты с увеличенным содержанием биологически активных веществ (аминокислот, углеводов) и сниженным содержанием фитина – как антипитательного компонента в ингредиентах.

Материалы и методы. В качестве объектов исследования были выбраны три вида зернового сырья: кукуруза, пшеница и рожь. Уровень протеолитической активности исследовали по степени гидролиза гемоглобина [14], амилолитической и глюкоамилазной – по степени гидролиза крахмала [15], ксиланазной – по степени гидролиза ксилана [16], целлюлазной – по степени гидролиза карбоксиметилцеллюлозы [17], фитолитическую – по степени гидролиза фитина, липолитическую – по степени гидролиза оливкового масла. Содержание редуцирующих углеводов [18], концентрацию фитата – спектрофотометрическим методом [19]. Состав и концентрацию свободных аминокислот определяли на высокоэффективном жидкостном хроматографе фирмы «AZURA» (Германия) [20].

Результаты и их обсуждение. На первом этапе исследовали состав основных полимеров зерна, представленный в таблице.

 

 

Химический состав зернового сырья, %

 

Показатель

Пшеница

Рожь

Кукуруза

Вода

14,0+0,6

14,0+0,7

14,0+0,6

Белок

12,0+0,5

10,0+0,6

10,3+0,5

Жир

2,0+0,1

2,2+0,1

5,0+0,2

Крахмал

58,9+2,8

55,2+2,6

60,0+3,0

Пищевые волокна

10,5+0,5

16,2+0,8

9,5+0,5

Фитиновая кислота

0,8+0,05

1,1+0,07

1,2+0,1

 

 

Далее проводили ферментативный гидролиз зернового сырья различными ферментными системами (ФС), проявляющими амилолитическую, протеолитическую, фитазную и липазную гидролитические способности.

Для ферментативной обработки сырья использовали ФС, различающиеся по составу ферментов: вариант 1 – протеаза (ПС); вариант 2 – протеаза+амилаза (ПС+АС); вариант 3 – протеаза+амилаза+целлюлаза (ПС+ЦС+АС); вариант 4 – целлюлаза+протеаза+амилаза+фитаза (ЦС+ПС+АС+ФС); вариант 5 – целлюлаза+протеаза+амилаза+фитаза+липаза (ЦС+ПС+ АС+ФС+ЛС). Дозировки биокатализаторов в каждой партии были следующими: амилаза – 1,5 ед.АС/г сырья, целлюлаза – 1,0 ед. ЦС/г сырья; протеаза – 0,5 ед. ПС/ г сырья; фитаза – 5,0 ед. ФС/г сырья, липаза – 0,5 ед. ЛС/г сырья. Соотношение субстрат:вода составляло 1:3, время и температура ферментативно-гидролитической обработки – 4 ч и 50 °С соответственно. По окончании гидролиза в ферментолизатах определяли биохимические показатели: редуцирующие углеводы, аминокислотный состав, содержание фитатов и пищевых волокон. Результаты биокаталитической конверсии полимеров сырья представлены на рисунке 1.

В процессе ферментативной обработки выявлено, что при воздействии ферментов амилолитического и протеолитического действия происходит гидролиз белковых и полисахаридных полимеров зерна до низкомолекулярных продуктов, тем самым облегчая доступность к субстрату других минорных ферментов. Выявлено максимальное увеличение аминокислот – на 20–40 %, редуцирующих веществ – на 40–60 % и снижение фитиновых веществ – на 20–45 % при воздействии ферментной системы (вариант 5).

Таким образом, мультиэнзимная композиция, включающая в себя помимо амилолитических и целлюлитических еще фитолитические и липолитические ферменты, способствует распаду фитиновых и жировых соединений, высвобождению фосфора и других микроэлементов. Выявлено увеличение показателей содержания в ферментолизатах зерна ценных нутриентов и биологически активных веществ в растворимой биодоступной форме, а также снижение антипитательных веществ, концентрация которых изменялась в зависимости от субстратной специфичности используемой ферментной системы.

 

 

а – пшеница

 

б – рожь

 

в – кукуруза

 

Рис. 1. Влияние ферментативной обработки на содержание БАВ

 

 

Рис. 2. Блок-схема получения ингредиентов на основе зернового сырья

 

Заключение. В процессе ферментативной обработки выявлено максимальное увеличение низкомолекулярных продуктов гидролиза сырья: аминокислот – на 20–40 %, редуцирующих веществ – на 40–60 и снижение фитиновых веществ – на 20–45 % при воздействии ферментной системы (вариант 5). Использование данного ферментного комплекса позволит увеличить пищевую и биологическую ценность ингредиентов, снизить антипитательные свойства за счет снижения фитиновой кислоты и увеличения доступности микроэлементов для усвоения организмом. Разработана блок-схема получения пищевых ингредиентов заданного состава.

Список литературы

1. Биотехнологические основы создания кормовых добавок с защитно-профилактическими свойствами / Г.С. Волкова [и др.]. М.: Первое экономическое издательство, 2020. 148 с.

2. Поляков В.А., Погоржельская Н.С. Инновационное развитие пищевой биотехнологии // Индустрия питания. 2017. № 4. С. 6–14.

3. Туршатов М.В., Поляков В.А., Леденев В.П. Технологические основы производства спирта с повышенными органолептическими показателями // Производство спирта и ликероводочных изделий. 2008. № 2. С. 29–31.

4. Абрамова, И.М. Особенности переработки пшеничного сырья, обеспечивающие производство спирта с высокими показателями качества // Производство спирта и ликероводочных изделий. 2012. № 1. С. 4–6.

5. Survey of the analytical methods for the phytic acid determination / K. Benešová [et al.] // Kvasny Prumysl. 2013. 59(5): 127–133. DOI:https://doi.org/10.18832/kp2013013.

6. Mikulski D., Kłosowski G. Phytic acid concentration in selected raw materials and analysis of its hydrolysis rate with the use of microbial phytases during the mashing process // Journal of the Institute of Brewing, 2015, 121(2): 213–218. DOI:https://doi.org/10.1002/jib.221.

7. Equilibrium, thermoanalytical and spectroscopic studies to characterize phytic acid complexes with Mn(II) and Co(II) / L. De Carli [et al.] // Journal of the Brazilian Chemical Society, 2009, 20(8): 1515–1522. DOI:https://doi.org/10.1590/S0103-50532009000800019.

8. Potential in vitro protective effect of quercetin, catechin, caffeic acid and phytic acid against ethanol-induced oxidative stress in SK-Hep-1 cells / K.-M. Lee [et al.] // Biomolecules and Therapeutics, 2012, 20(5): P. 492–498. DOI:https://doi.org/10.4062/biomolther.2012.20.5.492.

9. Greiner R., Konietzny U. Phytase for food application // Food Technology and Biotechnology, 2006, 44(2): P. 125–140.

10. Конверсия полимеров зерна пшеницы и кукурузы под влиянием фитолитических и протеолитических ферментов / Л.В. Римарева [и др.] // Сельскохозяйственная биология. 2021. Т. 56, № 2. С. 374–383.

11. Способы ферментативно-гидролитической подготовки зернового сусла для спиртового брожения / Е.М. Серба [и др.] // Вестник российской сельскохозяйственной науки. 2020. № 5. С. 52–56.

12. Отечественная фитаза в комбикормах для кур-несушек / Т.Н. Ленкова [и др.] // Птица и птицепродукты. 2016. № 1. С. 37–40.

13. Кулова Ф.М. Влияние ферментного препарата фитаза в рационах с различным уровнем минералов на зоотехнические показатели телят // Известия Горского государственного аграрного университета. 2016. № 53 (1). С. 71–76.

14. Gbenyi D.I., Nkama I., Badau M.H. Modeling of residual polyphenols, phytic acid and protein digestibility of extruded sorghum-cowpea formulated foods // Food science and quality management. 2016. Vol. 48, P. 18–26.

15. ГОСТ 34430-2018. Ферментные препараты для пищевой промышленности. Методы определения протеолитической активности. М., 2018.

16. ГОСТ 34440-2018. Ферментные препараты для пищевой промышленности. Методы определения амилолитической активности. М., 2018.

17. ГОСТ Р 55302-2012. Ферментные препараты для пищевой промышленности. Методы определения ксиланазной активности. М., 2018.

18. ГОСТ Р 55293-2012. Ферментные препараты для пищевой промышленности. Методы определения целлюлазной активности. М., 2018.

19. A phytic acid derived LiMn0.5Fe0.5PO4/Carbon composite of high energy density for lithium rechargeable batteries / Y. Meng [et al.] // Scientific Reports. 2019. № 9(1):6665. DOI: 10.1038/ s41598-019-43140-7.

20. Шлейкин А.Г., Скворцова Н.Н., Бландов А.Н. Биохимия. Лабораторный практикум: учеб. пособие. Ч. 2. Белки. Ферменты. Витамины. СПб.: Университет ИТМО, 2015. 106 с.


Войти или Создать
* Забыли пароль?